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Abstract— Wireless Sensor Networks (WSNs) are an essential 

technology for monitoring environmental and physical conditions. 

However, energy constraints limit their operational lifespan, 

making energy-efficient optimization crucial. This paper explores 

the role of Artificial Intelligence (AI) in addressing the challenges 

including routing, data aggregation, and node management 

through various AI techniques such as machine learning (ML), 

deep learning (DL), and heuristic optimization. Machine learning 

enables adaptive decision-making, deep learning enhances energy 

prediction and network performance and heuristic methods like 

Genetic Algorithms (GA) optimize tasks like routing and 

scheduling. Hybrid AI approaches further improve energy 

optimization by combining the strengths of multiple methods. 
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I. INTRODUCTION  

Wireless Sensor Networks (WSNs) comprise spatially 

distributed sensor nodes designed to monitor physical and 

environmental conditions. However, these networks face 

significant challenges due to the energy constraints imposed by 

the limited battery life of the sensor nodes.  

      

Fig.1: Block Diagram of Wireless Sensor Networks [3] 

Fig. 1 above represents the architecture of a Wireless Sensor 
Network (WSN), showcasing multiple sensor nodes that collect 
and transmit data wirelessly to a sink node through a noisy 
wireless environment.  

a) Sensor Nodes:  

(Node 1, Node 2, Node 3,  Node n).Each node in the network 

consists of the following components: Sensor: Detects 

environmental parameters such as                                           

temperature, humidity, motion, or pressure. Processor: 

Processes raw sensor data before transmitting it. RF 

Transceiver facilitates wireless communication by transmitting 

the processed data to the sink node. These nodes operate 

autonomously and communicate with the central unit (sink 

node). 

b) Wireless Noisy Environment: The sensor nodes 

communicate wirelessly, but the transmission occurs in a 

noisy environment, which may introduce interference, signal 

attenuation, or packet loss. This is a common challenge in 

real-world WSNs, affecting data accuracy and network 

efficiency. 

  c) Filtering Mechanism (FILTER): To improve data     

reliability, a filtering unit is applied before the data reaches 

the sink node. The purpose of this unit is to remove noise, 

errors, or redundant information caused by environmental 

disturbances. Filtering ensures high-quality data 

transmission and improves decision-making at the sink node. 

d)  Sink Node: The sink node is the central processing unit that 

collects, aggregates, and analyzes the data received from 

multiple sensor nodes. It serves as the interface between the 

sensor network and external systems, where the data can be 

further processed for applications like environmental 

monitoring, industrial automation, or smart city 

management.  

 This illustrates a multi-node WSN architecture, where sensor 

nodes wirelessly transmit data to a central sink node despite 

communication challenges in a noisy environment. The 

incorporation of a filtering mechanism helps in improving  

data integrity before reaching the sink node. 
Over the years, several traditional routing protocols have 

been developed to address the issue of energy efficiency in 
Wireless Sensor Networks (WSNs). Protocols such as LEACH 
(Low-Energy Adaptive Clustering Hierarchy), PEGASIS 
(Power-Efficient Gathering in Sensor Information Systems), 
and TEEN (Threshold-sensitive Energy Efficient sensor 
Network) introduced hierarchical and cluster-based approaches 
to minimize energy consumption. These strategies focused on 
balancing energy loads among nodes, reducing redundant data 
transmission, and using multi-hop communication for energy-
efficient data aggregation [1]. While these techniques marked 
significant progress in extending the network's lifetime, they 
often fell short in adapting to dynamic network conditions and 
achieving optimal energy usage. Efficient energy management 
is essential for extending the operational lifetime of WSNs, 
making it a key focus area in research. Traditional energy-
efficient approaches, while effective in static and predictable 
environments, struggle to cope with dynamic network 
topologies, fluctuating traffic loads, and varying environmental 
factors. To overcome these challenges, researchers have 
increasingly explored Artificial Intelligence (AI)-driven 
techniques, including machine learning algorithms and 
heuristic optimization methods, which have shown great 
promise in addressing energy consumption challenges.                                                                                                   
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       This paper presents a comprehensive review of current AI-
based energy-aware strategies, with an emphasis on node 
management, data aggregation, and routing protocols. The 
integration of AI enables WSNs to adapt dynamically to 
changing network conditions, improving overall efficiency and 
robustness. Techniques such as reinforcement learning allow 
nodes to optimize their energy usage through intelligent 
decision-making processes. By continuously learning from 
environmental conditions and previous actions, reinforcement 
learning algorithms can predict and adapt to network changes, 
ensuring optimal energy allocation and efficient data 
transmission. Similarly, clustering algorithms and data 
compression methods play a critical role in reducing redundant 
data transmission, thereby conserving energy. AI-based 
clustering mechanisms dynamically adjust cluster formation 
based on real-time network conditions, ensuring balanced 
energy distribution among nodes. Additionally, data 
compression techniques such as principal component analysis 
(PCA) and wavelet transformation help in reducing the volume 
of transmitted data without significant loss of information, 
thereby minimizing communication overhead and extending 
network lifetime. Moreover, energy-efficient routing 
algorithms leverage heuristic approaches to determine optimal 
paths, minimizing energy-intensive communication. 
Evolutionary algorithms, such as Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO), have been widely 
explored for optimizing routing paths by considering factors 
such as residual energy, link quality, and communication 
distance. AI-based predictive models further enhance routing 
efficiency by forecasting node failures and traffic congestion, 
allowing for proactive adjustments in routing paths. Beyond 
routing and data aggregation, AI-driven energy management 
strategies also focus on adaptive duty cycling and sleep 
scheduling techniques. Adaptive duty cycling ensures that 
sensor nodes dynamically adjust their active and sleep states 
based on real-time data requirements, significantly reducing 
idle energy wastage. Deep learning models have been applied 
to predict network traffic patterns, enabling intelligent 
scheduling of node activity to maintain network performance 
while conserving energy. Furthermore, AI-driven anomaly 
detection techniques improve the security and reliability of 
WSNs by identifying malicious activities or sensor faults that 
may lead to excessive energy consumption. By leveraging deep 
learning-based anomaly detection models, WSNs can 
proactively isolate compromised nodes and mitigate potential 
threats, ensuring stable and energy-efficient network operation.                            

    By addressing these key aspects, AI-based solutions are 
paving the way for the next generation of sustainable and 
intelligent WSN deployments. The convergence of AI with 
WSNs presents a transformative approach to energy efficiency, 
allowing networks to operate autonomously with minimal 
human intervention. Future research should focus on refining 
AI models to enhance interpretability, scalability, and real-time 
adaptability, ensuring that WSNs can meet the growing 
demands of smart applications in domains such as 
environmental monitoring, industrial automation, healthcare, 
and smart cities. Through continued advancements in AI-
driven energy optimization, WSNs can achieve unparalleled 
levels of efficiency, reliability, and sustainability. 

II.  LITERATURE REVIEW 

A. Energy Challenges in WSNs 

Wireless Sensor Networks (WSNs) consist of sensor nodes 

deployed across a wide geographical area to collect and 

transmit data related to environmental or physical conditions. 

Despite their significant role in various applications such as 

healthcare, environmental monitoring, and industrial 

automation, the efficient management of energy remains a 

critical challenge in WSNs.  Sensor nodes are typically 

powered by small, non-rechargeable batteries, which makes 

energy a scarce resource [1]. The longevity of a WSN heavily 

depends on how effectively this limited energy is utilized. One 

major challenge is the high energy consumption during data 

communication, which accounts for a significant portion of the 

total energy usage. The need for frequent data transmission 

over long distances further worsens this issue. Another key 

challenge arises from the need for continuous node operation 

in harsh or inaccessible environments, where replacing or 

recharging batteries is impractical. Energy consumption is also 

influenced by factors such as data processing, sensing 

operations, and network protocols. Inefficient routing 

algorithms, redundant data transmissions, and idle listening 

contribute to unnecessary energy wastage [5]. Energy 

balancing among nodes is another concern. Uneven energy 

depletion across the network leads to the formation of energy 

holes, disrupting network coverage and connectivity. 

Furthermore, maintaining energy efficiency while ensuring 

network performance, such as low latency and high data 

accuracy, presents a significant trade-off. Efforts to address 

these energy challenges include the development of energy-

efficient routing protocols, data aggregation techniques, and 

duty-cycling strategies. The use of energy harvesting 

technologies, where nodes draw power from ambient sources 

such as solar or vibration energy, has also shown promise in 

extending network lifetimes [6]. 

Despite these advancements, achieving an optimal 

balance between energy efficiency and network performance 

remains a pressing issue in the design and deployment of 

WSNs. 

 
                 

 Fig.2: Energy consumption of wireless sensor nodes’ components. [4] 

     As seen from the figure 2, RF-related operations 

(Transmit, Receive, and Listen) are the most energy-intensive 

activities in a Telos-B node, significantly impacting battery life. 

To enhance energy efficiency, reducing RF activity through 

techniques like clustering, data aggregation, or intelligent 

scheduling is essential. The integration of AI techniques, such 

as reinforcement learning and predictive analytics, can further 

optimize these processes by enabling intelligent decision-

making to dynamically adapt to network conditions. 

Additionally, utilizing AI-driven strategies for implementing 

sleep modes for both the MCU and RF modules can effectively 

conserve power. These findings highlight the critical role of AI 

in developing energy-aware designs and protocols in Wireless 

Sensor Networks (WSNs) to ensure a prolonged and 

sustainable operational lifetime [8]. Furthermore, AI-based 

adaptive transmission power control can dynamically adjust 

signal strength based on link quality, reducing unnecessary 

energy consumption. Intelligent duty cycling mechanisms can 

help nodes transition between active and low-power states 

efficiently, minimizing idle listening time. AI-enabled 

predictive maintenance can detect potential hardware failures 

in sensor nodes, allowing for proactive interventions that 

prevent excessive energy drain. The combination of these AI-

driven techniques ensures that WSNs achieve optimal energy 

utilization while maintaining seamless network performance 

[2]. 
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Fig.3: Breakdown of Energy Consumption in WSN Nodes 

The pie chart in fig.3. illustrates the distribution of energy 

consumption in wireless sensor nodes across three key 

activities: Wireless Communication, Data Processing, and 

Sensing. 

TABLE 1: ENERGY CONSUMPTION IN DIFFERENT NODE OPERATIONS 

 

As shown in Table 1 above, wireless Communication accounts 

for the highest energy consumption at 60%, underscoring its 

significant impact on the overall energy usage of sensor nodes. 

 Data Processing consumes 25%, showing the 

moderate energy demand required for analyzing and managing 

data within the node. 

 Sensing uses the least energy, at 15%, highlighting its 

comparatively low impact on the node's energy budget. 

B. Node Lifetime and Power Depletion 

Wireless Sensor Networks (WSNs), node lifetime is a 

critical aspect that directly affects the overall performance 

and sustainability of the network. The lifetime of a sensor 

node is primarily determined by its battery capacity and the 

rate of power depletion during various operations such as 

sensing, data processing, and communication [4]. Different 

power depletion factors: 

 

 Data Transmission and Reception: Communication 

consumes the most energy, especially during data 

transmission over long distances. Power-intensive radio 

operations often dominate overall energy expenditure. 

 Sensing Operations: The process of gathering 

environmental data consumes moderate power depending on 

the sensor type and frequency of data acquisition. 

 Data Processing: Processing data locally at the node 

saves communication energy but still requires computational 

power, depleting the battery. 

 Idle Listening: Nodes consume energy even when 

waiting to receive or transmit data, leading to unnecessary 

power wastage if not properly managed. 

 Environmental Impact: External factors such as 

temperature, interference, and distance between nodes can 

accelerate power depletion. 

C. Energy-Efficient Techniques: 

To prolong node lifetime, techniques such as duty-cycling, 

energy-efficient routing protocols, data aggregation, and 

energy harvesting mechanisms are implemented. These 

approaches help optimize energy usage, ensuring balanced 

consumption across the network. Table 1 below highlights that 

wireless communication consumes significantly more power 

than sensing or processing, which underscores the importance 

of optimizing communication strategies. [5] 

Additionally, AI-driven adaptive transmission control can 

dynamically adjust power levels based on link quality, 

reducing unnecessary energy expenditure. Machine learning-

based traffic prediction models enable efficient scheduling of 

transmissions, minimizing redundant data exchanges. 

Clustering techniques further aid in reducing communication 

overhead by aggregating data at cluster heads before 

transmission. Energy-aware MAC protocols optimize channel 

access, ensuring reduced contention and idle listening times. 

Moreover, the integration of energy harvesting with AI-based 

energy management strategies can enhance network longevity 

by supplementing battery power with renewable sources. This 

approach minimizes unnecessary energy consumption while 

maintaining efficient transmission. Adaptive duty cycling 

techniques further enhance energy conservation by 

dynamically adjusting sleep and wake cycles. 

Machine learning models can predict traffic patterns, 

enabling proactive adjustments to transmission schedules. The 

use of low-power listening (LPL) and wake-up radio 

mechanisms reduces idle listening overhead. 
 

D. Energy-Efficient Routing Protocols: 

Routing protocols play a crucial role in Wireless Sensor 

Networks (WSNs) by determining the optimal paths for data 

transmission while minimizing energy consumption. They are 

broadly classified into the following categories based on their 

operational principles: 

 

a) Data-Centric Protocols: These protocols focus on the      

data rather than the sensor nodes. Instead of addressing    

nodes, queries are sent based on specific data attributes 

[6][10]. Examples: Directed diffusion which aggregates and 

caches data to eliminate redundant transmissions. SPIN 

(Sensor Protocols for Information via negotiation) uses meta-

data negotiation to reduce energy consumption. 

 

b) Hierarchical Protocols: These protocols use clustering       

    mechanisms to group nodes into clusters, with a cluster   head 

responsible for managing Intra-cluster communication and 

forwarding aggregated data to the base station[7][10]. 

Examples: LEACH (Low-Energy Adaptive Clustering   

Hierarchy): Rotates cluster heads to balance energy usage. 

TEEN (Threshold Sensitive Energy Efficient Protocol): 

focuses on event-driven networks for critical data sensing. 

 

   c) Location-Based Protocols: These protocols use     

geographical information to guide data transmission, reducing 

the need for redundant paths and lowering energy 

consumption. Geographic Adaptive Fidelity (GAF): 

Conserves energy by turning off unnecessary nodes in dense 

   Power 

Consumption 

(mW) 

Description 

Data 

Transmission 

60 Energy required to send data to 

neighbouring nodes or a base 
station. 

Data 

Reception 

45 Power consumed while 

receiving data packets. 

Sensing 30 Power required for gathering 
environmental data using 

sensors. 

Data 

Processing 
20 Energy used in processing raw 

data at the node. 

Idle Listening 25 Power consumed while the 

node is inactive but ready to 

transmit or receive data. 

Sleep Mode 5 Energy consumption in low-
power mode to conserve 

battery. 
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areas. Geographic and Energy-Aware Routing (GEAR): 

Balances energy and distance metrics for routing decisions 

[8][10]. 

 

d) QoS-Based Protocols: Quality of Service (QoS)-based       

      protocols ensure reliability, bandwidth, and latency         

requirements while optimizing energy consumption. [9] 

Examples: SAR (Sequential Assignment Routing): maintains 

a balance between energy efficiency and QoS              

constraints. Energy-Aware QoS Routing: Selects path that 

meet QoS requirements while extending network lifetime. 

e) Mobility-Based Protocols: Designed for WSNs where   

    nodes or base stations are mobile, these protocols adapt    

dynamically to changing topologies [10]. Examples: MOBIC 

(Mobile-Based Clustering): Adapts clusters based on mobility   

    metrics. Mobile-IP-Based Routing uses mobile agents for 

routing in dynamic environment 

 

f) Multipath Routing Protocols: Multipath protocols 

establish multiple paths between the source and destination,   

enhancing fault tolerance and balancing energy consumption. 

Examples: Energy-Aware Multipath Routing: Splits traffic 

across multiple paths to distribute energy usage. Disjoint 

Multipath Routing ensures energy-efficient parallel data 

transmission [10]. 

g) Hybrid Protocols: Combines features of different 

protocol categories to enhance overall performance and energy 

efficiency. Examples: ZRP (Zone Routing Protocol):  

Integrates proactive and reactive routing techniques. HEED 

(Hybrid Energy-Efficient Distributed Clustering) combines 

clustering and energy-awareness for balanced performance. 

[10] 

 

III. ADVANCEMENT IN WSNS  

A. AI-Driven Routing Protocols for Energy Optimization in 

Wireless Sensor Networks (WSNs) 

Traditional optimization techniques may not be sufficient to 

meet the dynamic and real-time demands of energy-efficient 

solutions in WSNs. AI techniques have emerged as powerful 

tools to address energy consumption by leveraging intelligent 

algorithms, models, and data-driven approaches. AI methods 

can adapt to dynamic network environments, allowing nodes 

to optimize their actions based on real-time conditions. The 

most widely used AI techniques in WSNs include Machine 

Learning (ML), Deep Learning (DL), and heuristic 

optimization [12.] These AI-driven approaches enhance WSN 

performance by reducing latency, improving accuracy, and 

extending network lifespan. 

By integrating AI with WSNs, intelligent decision-making and 

energy-efficient operations become achievable in dynamic 

environments. 

1) Machine Learning-Based Routing Protocols: As 

show in Fig. 4, Machine Learning (ML) approaches enhance 

routing protocols by allowing sensor nodes to learn from past 

experiences and make intelligent decisions to optimize energy 

consumption. 

a) Supervised Learning in Routing: Supervised 

learning models are trained using labelled data, where the goal 

is to predict optimal routing decisions based on historical energy 

consumption patterns. These models can be trained to select 

paths that minimize energy consumption and maximize network 

lifetime. Supervised learning techniques address various issues 

in Wireless Sensor Networks (WSNs), including localization, 

coverage challenges, data collection, event detection, routing, 

and target tracking. Regression, for example, predicts a value 

(Y) based on a given set of attributes (X) using continuous 

variables, offering accurate predictions with minimal errors. 

Support Vector Machines (SVMs) provide efficient solutions 

for optimization problems involving complex constraints and 

are particularly useful for resolving localization issues and 

coverage gaps near sink nodes. Decision trees, utilizing tree-like 

structures, enhance network lifetime by optimizing cluster head 

(CH) selection, while also identifying key features such as loss 

rate and failure times. Random Forest (RF) algorithms, 

composed of multiple decision trees, excel with large, 

heterogeneous datasets by accurately predicting missing values 

and providing robust classification outcomes [11]. Artificial 

Neural Networks (ANNs), built from interconnected decision 

units, can identify intricate patterns in data but require intensive 

computational effort. Deep learning, a subset of ANNs, uses 

multi-layer representations inspired by the human nervous 

system to extract high-level features, enabling both supervised 

and unsupervised tasks. K-nearest neighbor (k-NN) classifies 

test data by referencing nearby labeled data and is particularly 

effective for fault detection in WSNs. Lastly, Bayesian learners 

estimate sensor node mobility without direct mobility data, 

enabling the creation of predictive mobility models and routing 

strategies, making them a valuable tool in WSN management 

[12]. Supervised learning in the context of routing for Wireless 

Sensor Networks (WSNs) involves several interconnected 

stages that ensure the model accurately predicts the most 

energy-efficient paths. These stages begin with meticulous data 

processing, continue with careful model design, and culminate 

in robust training practices. Data Processing and Feature 

Engineering process starts with gathering extensive historical 

data from network operations, which includes records of energy 

consumption, packet loss, latency, and node failures. This raw 

data is then labelled according to the performance of various 

routing decisions, categorizing paths as either energy-efficient 

or suboptimal. During feature engineering, key parameters such 

as battery levels, inter-node distances, and transmission success 

rates are extracted. These features are often normalized to 

ensure that differences in scale do not bias the model’s learning 

process. Dimensionality reduction techniques, such as Principal 

Component Analysis (PCA), can also be applied to focus on the 

most significant variables, thereby improving model 

performance and reducing computational overhead. 

 
Fig. 4: Block Diagram showing Machine Learning 

 

A range of model architectures can be employed, each tailored 

to capture different aspects of network behavior.  
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Artificial Neural Networks (ANNs) and Deep Neural 

Networks (DNN) models can learn complex relationships 

within the data. A feedforward network, for instance, maps 

input features directly to routing decisions, while deeper 

architectures with multiple hidden layers can identify subtle 

patterns that impact energy usage. 

Although often associated with image processing, 

CNNs are useful in spatial feature extraction. In WSNs, they 

can help analyze the geographic layout of nodes, which is vital 

for optimizing routes based on physical positions. 

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) Networks models are beneficial when 

historical data has temporal dependencies—such as trends in 

energy consumption over time. They are capable of predicting 

future network states by understanding patterns in time-series 

data. 

Models like decision trees provide clear, interpretable 

paths for routing decisions. Their ensemble counterparts, such 

as Random Forests, combine the output of multiple trees to 

improve prediction robustness, especially when dealing with 

heterogeneous data. 

Support Vector Machines (SVMs) models with their 

ability to handle complex classification problems, are 

particularly effective in scenarios where routing decisions 

hinge on multiple, often conflicting constraints. 

Once the architecture is selected, the model must be 

trained effectively. This training involves several iterative 

steps: 

 Optimization Algorithms: Techniques like Stochastic 

Gradient Descent (SGD) and its variants (Adam, RMSProp) 

are commonly used to update model parameters. These 

methods minimize the error between predicted and actual 

routing outcomes. 

 Regularization Strategies: To prevent the model from 

overfitting, strategies such as dropout, L1/L2 regularization, 

and early stopping are applied. This ensures that the model 

remains generalizable to new network scenarios. 

 

Systematic approaches such as grid search or random search are 

used to fine-tune the number of layers, neurons per layer, 

learning rates, and other critical hyper parameters. Cross-

validation techniques, such as k-fold validation, further ensure 

that the model's performance is stable across different subsets 

of the data. 

Finally, performance is measured using metrics 

appropriate to the task—mean squared error (MSE) for 

regression-based predictions or accuracy for classification 

tasks. These metrics are essential for gauging how well the 

model is predicting energy-efficient routes compared to 

conventional methods. 

 

Practical Implementation 

 

   In practice, a supervised learning framework might be 

deployed by training a deep neural network on historical 

routing data, which includes metrics such as energy 

consumption, node density, and connectivity status. After 

thorough feature extraction and hyper parameter optimization, 

the resulting model can predict the most energy-efficient paths. 

Studies have shown that such approaches can lead to 

significant energy savings—sometimes reducing consumption 

by as much as 25% compared to traditional routing strategies. 

[11] 

b) Unsupervised Learning for Clustering and Routing: 

Unsupervised learning techniques play a pivotal role in 

Wireless Sensor Networks (WSNs) by enabling the grouping 

of sensor nodes into clusters without requiring labeled data. 

These methods reduce communication overhead and enhance 

energy efficiency by optimizing routing protocols. Different 

unsupervised learning techniques, such as K-means clustering, 

group sensor nodes into clusters, reducing the energy cost of 

communication.  Principal Component Analysis (PCA) is an 

effective technique for reducing the dimensionality of data in 

Wireless Sensor Networks (WSNs), which helps enhance 

scalability and minimize energy consumption. Hierarchical 

clustering, on the other hand, organizes similar objects into 

clusters using either a top-down (divisive) or bottom-up 

(agglomerative) approach, allowing for flexible grouping 

without requiring prior knowledge of the number of clusters. 

Fuzzy c-means (FCM) clustering, introduced by Bezdek in 

1981, uses fuzzy set theory to assign data points to one or more 

clusters based on metrics such as intensity, distance, or 

connectivity. FCM iteratively determines optimal cluster 

centers and delivers superior results for overlapping datasets 

compared to K-means, making it ideal for applications 

requiring nuanced grouping. 

The following sections detail the major unsupervised learning 

methods applied in WSNs: 

 

 K-means Clustering: K-means clustering is widely 

employed to partition sensor nodes into balanced groups or 

clusters based on their attributes, such as location, energy 

levels, and connectivity metrics. This method iteratively 

assigns nodes to the nearest cluster centre, with the objective 

of minimizing intra-cluster variance. Once clusters are 

formed, the routing protocol can select a cluster head (CH)—

typically a node with a high remaining energy reserve—to act 

as an aggregator for data within that cluster. This approach 

not only streamlines the routing process but also reduces the 

energy burden on individual nodes by centralizing data 

aggregation. The use of K-means helps maintain network 

stability by ensuring that clusters are well-balanced and that 

the CHs are optimally positioned to minimize the 

communication distance among nodes. 

 Principal Component Analysis (PCA): Principal 

Component Analysis is an effective dimensionality 

reduction tool that enhances the scalability of WSNs by 

compressing high-dimensional data into a smaller set of 

representative components. In routing applications, PCA is 

integrated to extract the most significant features from sensor 

data, which may include parameters such as signal strength, 

node density, and energy metrics. By reducing redundancy 

and highlighting the primary factors that influence network 

performance, PCA assists in the identification of the most 

efficient routes between nodes and cluster centers. This 

process directly contributes to improved energy efficiency 

and prolonged network lifetime by reducing unnecessary 

data transmission and computational overhead. 

 Hierarchical Clustering: Hierarchical clustering 

offers a flexible method for organizing sensor nodes into 

nested clusters without the need to pre-specify the number of 

clusters. This technique can be executed in two main ways: 

(i) Divisive (Top-Down) Approach: Begins with the 

entire dataset as one cluster and recursively splits it into 

smaller groups based on similarity measures. 

(ii) Agglomerative (Bottom-Up) Approach: Starts with 

individual nodes as separate clusters and merges them 

iteratively based on predefined criteria such as distance or 

energy levels. This hierarchical organization not only 

accommodates varying network sizes and densities but also 

adapts to the dynamic nature of WSNs by allowing clusters to 

be reformed as network conditions evolve. 

 Fuzzy C-means (FCM) Clustering: Fuzzy C-means 

clustering extends traditional hard clustering methods by 

incorporating fuzzy set theory, where each sensor node can 

belong to multiple clusters with varying degrees of 

membership. This nuanced assignment is particularly useful in 
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environments where sensor nodes exhibit overlapping features 

or when there is ambiguity in node categorization due to 

gradual changes in network conditions. FCM iteratively 

adjusts the membership grades and computes optimal cluster 

centers, thereby providing a more flexible clustering 

framework that is well-suited for heterogeneous datasets. This 

method is especially beneficial in scenarios where fine-grained 

control over routing decisions is necessary, as it 

accommodates uncertainty and variability in sensor data.  

The integration of these unsupervised learning techniques 

into routing protocols has demonstrated significant 

improvements in energy management. For example, clustering 

algorithms such as K-means and FCM have been shown to 

reduce inter-cluster communication overhead, leading to lower 

overall energy consumption. Additionally, by leveraging PCA 

for dimensionality reduction, routing protocols can more 

effectively identify the shortest and most energy-efficient 

paths, thereby extending the operational lifetime of the 

network. In practical implementations, these combined 

methods have resulted in enhanced network performance, with 

studies reporting noticeable energy savings compared to 

conventional routing strategies [13]. 

c) Reinforcement Learning (RL) in Routing: 

Reinforcement Learning (RL) is a machine learning paradigm 

where sensor nodes (agents) learn optimal routing strategies 

through interactions with their environment. By receiving 

feedback in the form of rewards or penalties, agents gradually 

adapt their decision-making processes to optimize network 

performance under varying conditions such as energy 

consumption, traffic load, and environmental changes. 

 

 
 

Fig. 5: Schematic of Reinforcement Learning 

 

In WSN applications, RL has proven to be a powerful tool for 

tasks including collaborative communication, routing 

optimization, and flow control. Its “trial and error” approach 

allows for the development of robust, adaptive protocols that 

can dynamically adjust to network fluctuations. For example, 

RL-based routing algorithms can continuously update path 

selection based on real-time measurements of node energy 

levels and congestion status, thereby enhancing overall 

network efficiency and prolonging the network lifetime. 

  
 (i) Key RL Algorithms and Their Applications 

 Q-Learning: As Shown in Fig. 6, One of the most 

popular RL algorithms, Q-learning, builds a Q-table where 

each entry represents the expected cumulative reward of taking 

a particular action in a given state. In routing, Q-learning helps 

determine the optimal next-hop selection by considering 

factors such as energy reserves and traffic congestion. 

 Deep Q-Networks (DQN): When the state-action 

space is large, DQNs use deep neural networks to approximate 

the Q-function, allowing the algorithm to handle more 

complex scenarios and richer feature sets. 

 Multi-Agent Reinforcement Learning (MARL): In 

distributed WSNs, multiple nodes learn cooperatively, sharing 

insights to optimize routing across the network. This 

collaborative learning framework is particularly effective in 

dynamic and heterogeneous network environments. 

 

Fig. 6: Q-learning-based geographic routing protocol flow chart [16] 

 

(ii) Addressing Overfitting in Reinforcement Learning 

Overfitting can occur when an RL agent excessively tailors its 

policy to a specific set of environmental conditions, reducing 

its ability to generalize to new or changing scenarios. To 

mitigate overfitting in RL-based routing protocols, several 

strategies are employed: 

 Exploration vs. Exploitation Balance: Implementing 

strategies such as ε-greedy policies ensures that the agent 

explores a variety of actions rather than always selecting the 

known best option. This balance prevents the model from 

converging too quickly on suboptimal policies. 

 ExperienceReplay: In DQN-based approaches, 

experience replay buffers store past interactions. By sampling 

mini-batches randomly during training, the algorithm breaks 

the correlation between consecutive samples, which helps in 

stabilizing learning and reducing overfitting. 

 Regularization Techniques: Techniques such as 

dropout within deep neural networks and weight decay (L2 

regularization) are applied to discourage overly complex 

models that fit the training data too closely. 

 Continuous Model Updates and Validation: Periodic 

evaluation of the learned policies on separate validation 

datasets or through simulation environments helps detect 

overfitting early. 

 

 Implementing RL in routing protocols offers multiple 

benefits: 

 Dynamic Adaptation: RL models continuously adjust 

to new network conditions, ensuring that routing decisions 

remain optimal as node energy levels and traffic patterns 

change. 

 Minimal Resource Overhead: RL algorithms, 

particularly those based on Q-learning, are designed to work 

with low computational and memory footprints, which is 

essential for resource-constrained sensor nodes. 

 

 Collaborative Network Optimization: In multi-agent 

settings, nodes can share learned policies, leading to enhanced 

cooperation and more efficient overall network behavior. A 

practical implementation involved deploying a Q-learning 
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based routing protocol in a simulated WSN environment. The 

algorithm was trained to select energy-efficient paths by 

continuously updating its Q-values based on feedback from 

network conditions. Overfitting was managed using a ε-greedy 

policy and experience replay, ensuring that the model 

maintained robust performance despite fluctuating traffic 

loads. The study reported improved network efficiency and 

reduced energy consumption, validating the approach as a 

viable solution for dynamic routing in WSNs [15]. 

 

B. Heuristic Optimization in Routing 

 

Heuristic optimization techniques provide practical solutions 

for energy management in Wireless Sensor Networks (WSNs) 

by employing intelligent, iterative search methods that yield 

near-optimal routing paths without incurring the 

computational burden of exact methods. These strategies are 

especially useful in dynamic network environments where 

traditional algorithms might struggle with real-time 

adaptability. 

a) Genetic Algorithms (GA) for Routing Optimization: 

Genetic Algorithms (GAs) draw inspiration from natural 

evolutionary processes such as selection, crossover, and 

mutation ash shown in fig.7 below.  In the context of WSNs, 

GAs are applied to iteratively refine a population of routing 

solutions. Each candidate solution is evaluated based on 

criteria like residual energy, path reliability, and 

communication cost. Over successive generations, the 

algorithm favours solutions that offer lower energy 

consumption and enhanced network longevity. Key points are: 

 Evolutionary Process: GA begins with an initial 

population of potential routing paths. Through selection, more 

fit solutions (e.g., routes that prioritize nodes with higher 

remaining energy) are chosen to produce offspring via 

crossover and mutation. 

 Optimization Objective: The primary goal is to 

reduce energy usage by dynamically identifying optimal or 

near-optimal paths that extend the network’s operational 

lifetime. 

 Adaptive Routing: The iterative nature of GA allows 

the network to adapt to changes, such as node failures or 

varying traffic loads, ensuring that the most efficient routing 

paths are maintained over time. 

 

    Fig.7: The general scheme of GA mechanism [18] 

 

In one study, a GA-based routing protocol was implemented 

where the algorithm consistently selected nodes with higher 

energy reserves for routing tasks. This resulted in more reliable 

data transmission and a significant reduction in overall energy 

consumption compared to conventional routing approaches 

[18]. 

 

b) Particle Swarm Optimization (PSO): Particle Swarm 

Optimization (PSO) is inspired by the collective behavior 

observed in flocks of birds or schools of fish. In PSO, each 

potential solution, termed a "particle," represents a candidate 

routing path. These particles move through the search space 

influenced by both their own best-known position and the best-

known positions of their neighbors. The algorithm as shown in 

fig. below, iteratively adjusts the trajectories of the particles to 

converge on an optimal set of routing paths. 

 

 

 

 
 

 
Fig. 8: Flowchart for particle swarm optimization (PSO) 

 

Key points of PSO are: 

 Social Behavior Modeling: PSO leverages the idea 

that individuals in a group can share information to improve 

collective decision-making. Each particle updates its position 

by considering both personal experience and the successes of 

neighboring particles. 

 Energy Minimization: By evaluating factors such as 

node energy levels and mobility, PSO is designed to minimize 

the overall energy cost of communication. The algorithm 

continuously refines the routing paths to reduce energy drain 

on the network. 

 Robust Adaptation: The inherent flexibility of PSO 

allows it to efficiently handle dynamic changes in the 

network, such as fluctuating node energy or varying network 

topologies. 

In practical applications, PSO-based routing protocols have 

been shown to effectively select relay nodes that minimize 

energy usage. By continuously optimizing the route based on 

current network conditions, PSO contributed to a measurable 

reduction in overall energy consumption [19]. 

C.   Hybrid AI-Driven Routing Protocols 

Combining AI techniques—such as machine learning, 

reinforcement learning, and heuristic optimization—leads to 

hybrid routing protocols that exploit the strengths of each 

method to enhance energy efficiency in Wireless Sensor 

Networks (WSNs). These protocols are designed to balance 

exploration and exploitation, enabling them to adapt 

dynamically to changing network conditions. 

a) Hybrid Genetic Algorithm and Reinforcement Learning: 

A hybrid approach combining Genetic Algorithms and 

Reinforcement Learning optimizes routing decisions by 
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exploring multiple potential solutions through evolutionary 

processes and refining them using feedback from the network 

environment. In this hybrid approach, Genetic Algorithms 

(GAs) first explore a diverse set of potential routing paths 

through evolutionary processes such as selection, crossover, 

and mutation. The GA generates an initial population of 

candidate solutions based on criteria like node energy levels 

and path reliability. These candidates are then refined using 

Reinforcement Learning (RL), where the routing decisions are 

adjusted according to real-time feedback from the network. 

This combination allows the system to benefit from the broad 

search capabilities of GA while fine-tuning the solutions with 

RL based on immediate network performance—resulting in 

lower latency and balanced energy consumption. 

Experimental studies have shown that this method can 

significantly improve network longevity and overall 

performance [20]. 

 

           

  
Fig. 9: Hybrid Intelligence based routing using Fuzzy system and   
           Reinforcement learning 
 

b) Hybrid Particle Swarm Optimization and Machine 

Learning: This approach integrates Particle Swarm 

Optimization (PSO) with machine learning techniques to 

enhance the discovery of energy-efficient paths. PSO mimics 

the social behavior of a flock, where individual particles 

(routing candidates) update their positions based on both their 

own experiences and those of their peers. Simultaneously, 

machine learning models analyze historical and real-time data 

to predict energy consumption trends and adjust routing 

decisions accordingly. This synergy enables the protocol to 

adapt to dynamic environmental changes, such as node 

mobility or varying traffic loads, thereby ensuring that routing 

remains optimal even under fluctuating conditions. Simulation 

results indicate that this hybrid method leads to a marked 

reduction in energy consumption and an extension of the 

network's operational lifetime [20]. 

 

D. Limitations of Heuristic Optimization Methods in Real-

World WSNs 

While heuristic optimization techniques such as Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) 

have shown promising results in reducing energy consumption 

and optimizing routing in WSNs, several challenges hinder 

their effectiveness in real-world deployments: 

 Computational Complexity: Despite being less 

resource-intensive than exact algorithms, heuristic methods 

can still require significant computational power—especially 

when dealing with large-scale networks or complex fitness 

functions. This can strain the limited processing capabilities of 

sensor nodes. 

 Convergence Speed: Heuristic algorithms often rely 

on iterative processes that may converge slowly to an 

acceptable solution. In dynamic WSN environments, where 

network conditions change rapidly, slow convergence can 

result in suboptimal or outdated routing decisions. 

 Sensitivity to Parameter Settings: The performance 

of heuristic methods is heavily influenced by their parameter 

configurations (e.g., population size in GA, inertia weight in 

PSO). Finding the optimal set of parameters typically requires 

extensive experimentation, and suboptimal settings can lead to 

premature convergence or inconsistent results. 

 Scalability Issues: As the network size increases, the 

search space expands exponentially. This makes it more 

challenging for heuristic algorithms to consistently identify 

near-optimal solutions within a reasonable timeframe, 

potentially affecting the overall efficiency of the routing 

protocol. 

 Adaptability and Robustness: Real-world WSNs are 

subject to unpredictable changes such as node failures, 

interference, and environmental variability. Heuristic 

methods may struggle to adapt quickly to these unforeseen 

conditions, leading to performance degradation if the 

algorithm cannot recalibrate its search strategy in time. 

 Implementation Complexity: Integrating heuristic 

optimization into WSN routing protocols often involves 

complex coding and extensive simulation to ensure that the 

algorithm performs well under various scenarios. This 

complexity can be a barrier to practical deployment, 

especially in resource-constrained or mission-critical 

applications. 

 Energy Overhead: Although designed to optimize 

energy consumption, the computational and communication 

overhead incurred during the execution of these heuristic 

methods can sometimes negate the energy savings achieved 

through optimized routing. This trade-off must be carefully 

managed to ensure that the net effect is beneficial for 

network longevity. 

IV. COMPARISON OF AI-DRIVEN APPROACHES AND 

TRADITIONAL WSN PROTOCOLS 

A. Adaptability and Flexibility 

 

      (a) Traditional Protocols: Typically rely on fixed rules and 

pre-determined strategies (e.g., LEACH, PEGASIS). They are 

limited in adapting to real-time changes such as node failures, 

interference, or variable network conditions. 

(b) AI-Driven Approaches: They use dynamic, data-driven 

models (e.g., supervised, reinforcement learning) that adjust 

routing decisions in real-time. They are capable of learning 

from historical and live data, thereby adapting to changes in 

network topology or environmental conditions. 

B. Energy Efficiency 

(a) Traditional Protocols: They employ structured 

methods like clustering or multi-hop routing to reduce energy 

consumption. Their static nature may not always yield optimal 

energy usage under varying network conditions. 

  (b) AI-Driven Approaches: They optimize energy 

consumption by predicting optimal paths and adjusting 
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strategies dynamically. Techniques like reinforcement 

learning can balance energy loads among nodes, leading to 

potential energy savings and prolonged network lifetime. 

 c) Computational and Implementation Complexity 

Despite the advancements in AI-driven energy-aware 

optimization for Wireless Sensor Networks (WSNs), several 

challenges remain, especially when considering large-scale 

deployments: 

 Computational Complexity: Many AI models, 

particularly those based on deep learning, demand considerable 

computational resources. This high computational overhead is 

challenging for sensor nodes with limited processing 

capabilities. The energy consumed during both training and 

inference further complicates their deployment in power-

constrained environments. 

 Scalability in Large WSNs: As the network scales, 

centralized AI models face substantial challenges due to 

increased computational overhead and communication costs. 

Managing data from numerous nodes and processing it centrally 

can become unsustainable, leading to delays and energy 

inefficiencies. 

 Security Vulnerabilities: Integrating AI introduces 

additional security risks, such as adversarial attacks where 

malicious actors might manipulate data to mislead AI models. 

Ensuring robust security mechanisms to protect these models 

is crucial for reliable WSN operations. 

V. FUTURE DIRECTIONS 

A. Decentralized and Federated Learning: 

To address scalability, future research should focus on 

distributed AI models where sensor nodes collaboratively train 

a global model without sharing raw data. Federated learning, in 

particular, allows each node to perform local training and then 

aggregate the results centrally. This approach reduces 

communication overhead and enhances privacy while 

maintaining model accuracy across the network. 

 

B. Edge AI Implementation: 

 

Offloading intensive computational tasks to edge devices or 

gateways can significantly relieve the processing burden on 

individual sensor nodes. Edge AI can manage complex 

computations locally and send only necessary insights to the 

sensor network, thereby conserving energy and improving 

real-time responsiveness. 

 

C. Lightweight AI Models:  

 

Developing energy-efficient, lightweight AI algorithms 

specifically designed for resource-constrained environments is 

essential. These models should balance the trade-off between 

performance and resource usage, ensuring that energy savings 

are not negated by high computational demands. 

 

D. Enhanced Security Measures: 

  

Future directions should also explore robust security 

frameworks tailored to AI in WSNs. Techniques such as 

secure multi-party computation and adversarial training can 

help safeguard AI models against potential attacks, ensuring 

network integrity. 

VI. CONCLUSION 

AI-driven techniques play a pivotal role in addressing 

energy optimization challenges in Wireless Sensor Networks 

(WSNs). Machine learning approaches, including supervised, 

unsupervised, and reinforcement learning, enable adaptive and 

intelligent routing decisions based on real-time data, 

enhancing energy efficiency and communication reliability. 

Heuristic optimization methods, such as Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), Simulated 

Annealing, Tabu Search, and Ant Colony Optimization, are 

highly effective for tasks like routing, node placement, and 

scheduling by identifying energy-efficient paths and 

configurations. Furthermore, Deep Learning models, 

including Deep Neural Networks (DNNs), Convolutional 

Neural Networks (CNNs), and Recurrent Neural Networks 

(RNNs), provide advanced solutions for predicting energy 

consumption patterns, optimizing routing strategies, and 

improving overall network performance. Hybrid AI 

approaches, which combine the strengths of multiple 

techniques, show immense potential in dynamically 

optimizing energy consumption, extending the network’s 

lifetime, and ensuring sustainable operation in resource-

constrained environments. Together, these AI-driven solutions 

represent a transformative approach to achieving energy 

efficiency in WSNs while maintaining robust and reliable 

communication. 

REFERENCES 

 [1]     N. Hariharan and S. Sreelekshmi, "A Survey on Wireless Sensor  

           Networks,"International Journal of Scientific Engineering and Scienc    

          (IJSES), vol. 1, no. 11, pp. 75–81, 2017. 
[2]     M. S. Basingab, H. Bukhari, S. H. Serbaya, G. Fotis, V. Vita, S. Pappas,       

          and A. Rizwan, "Artificial Intelligence for Wireless Sensor Networks  

          Enhancement," Applied Sciences, vol. 14, no. 12, Art. no. 4960, 2024,     
          doi: 10.3390/app14124960. 

[3]     Montoya, A., Restrepo, D. C., & Ovalle, D. A. (2010). Artificial    

          Intelligence for Wireless Sensor Networks Enhancement. In Smart  

          Wireless Sensor Networks. IntechOpen. https://doi.org/10.5772/12962 

[4]     F. Strakosch and F. Derbel, "Fast and Efficient Dual-Forecasting    

         Algorithm for Wireless Sensor Networks," in Proc. SENSOR 2015,  
          Nürnberg, Germany, May 19–21, 2015, pp. 859–863. 

 

[5]     M. Banimelhem and Y. Khamayseh, "Wireless Sensor Networks: A   
         Survey, Categorization, Main Issues, and Future Research Directions,"    

         Computing and Informatics, vol. 41, no. 1, pp. 1–28, 2022, doi:  

         10.1007/s00607-022-01071-8. 
[6]     R. K. Mondal and D. Sarddar, "Data-centric routing protocols in wireless      

         sensor networks: A survey," COMPUSOFT: An International Journal of    

         Advanced Computer Technology, vol. 3, no. 2, pp. 593–598, Feb. 2024.  
       

[7]     M. K. Khan, M. Shiraz, Q. Shaheen, S. A. Butt, R. Akhtar, M. A. Khan,       

         and W. Changda, "Hierarchical Routing Protocols for Wireless Sensor    
     Networks: Functional and Performance Analysis," Journal of Sensors,   

     vol. 2021, Article ID 7459368, 2021.  

[8]    K. Bhadrachalam and B. Lalitha, "An energy efficient location aware   
         geographic routing protocol based on anchor node path planning and  

  

  
           optimized Q-learning model," Sustainable Computing: Informatics  

             and Systems, vol. 46, Jun. 2025, Art. no. 101084.  

    [9]     B. Dhanalakshmi, L. SaiRamesh, and K. Selvakumar, "Intelligent    
              energy-aware and secured QoS routing protocol with dynamic   

              mobility estimation for wireless sensor networks," Wireless Networks,   

              vol. 27, pp. 1503–1514, Jan. 2021. 
   [10]     K. Yaeghoobi, M. K. Soni and S. S. Tyagi, "A Survey Analysis of     

              Routing Protocols in Wireless Sensor Networks," International    

              Journal of Engineering and Technology, vol. 7, no. 4, pp. 1432–1437,  

               Aug. 2015. 

[11]    J. H. Park, C. H. Kim, and D. H. Lee, "Energy-Efficient Routing      

           Protocol for Wireless Sensor Networks Using Supervised Learning,"  
           IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3135–   

          3142, 2016. (Content taken from Section 1.1: Supervised Learning). 

[12]     A. Haque, M. N.-U.-R. Chowdhury, H. Soliman, M. S. Hossen, T.    
            Fatima, and I. Ahmed, "Wireless Sensor Networks Anomaly    

            Detection Using Machine Learning: A Survey," arXiv preprint          

            arXiv:2303.08823, Mar. 2023. 
[13]     S. M. G. Parsa and M. F. M. Ismail, "Unsupervised Learning-Based   

            Clustering for Energy-Efficient Routing in Wireless Sensor  
             Networks," Journal of Sensor and Actuator Networks, vol. 8, no. 3     

             pp. 91–102, 2019. 

 [14]     J. Patel and H. El-Ocla, "Energy Efficient Routing Protocol in Sensor  
            Networks Using Genetic Algorithm," Sensors, vol. 21, no. 21, p.  

            7060,Oct. 2021. 

 [15]     A. K. Singh, M. K. Gupta, and S. Prakash, “Reinforcement learning-   
            based energy-aware routing in wireless sensor networks,” *IEEE    

            Sensors Journal*, vol. 19, no. 11, pp. 4302–4310, 2019.   

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025  |  DOI: 10.63169/GCARED2025.p13  |  Page 94
ISBN: 978-93-343-1044-3



[16]     A. Chaudhari, V. Deshpande, and D. Midhunchakkaravarthy,    
           "Energy-efficient Q-learning-based routing in wireless sensor   

            networks," Int. J. Smart Sens. Intell. Syst., vol. 18, no. 1, Article  

            0008, 2025. 

[17]     K. P. S. Kumar, P. V. B. R. G. Krishna, and R. D. N. R. Rao, "Deep  

           Q- Networks for Adaptive Energy-Aware Routing in Wireless Sensor    

            Networks," Sensors, vol. 19, no. 10, pp. 12–15, 2019. 
[18]     B. S. Kumar, S. G. Santhi, and S. Narayana, "An Enhanced Genetic  

           Algorithm (EGA)-based Multi-Hop Path for Energy Efficient in  

           Wireless Sensor Network (WSN)," Int. J. Adv. Comput. Sci. Appl., vol.  
           13, no. 4, pp. 114–120, 2022. 

[19]     C. Lei, "An energy-aware cluster-based routing in the Internet of    

           Things using particle swarm optimization algorithm and fuzzy     
            clustering," J. Eng. Appl. Sci., vol. 71, Article 135, 2024. 

[20]     X. Wang, H. Wu, Y. Miao, and H. Zhu, "A Hybrid Routing Protocol     

           Based on Naïve Bayes and Improved Particle Swarm Optimization   
           Algorithms," Electronics, vol. 11, no. 6, p. 869, 2022. 

 

  
 

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025  |  DOI: 10.63169/GCARED2025.p13  |  Page 95
ISBN: 978-93-343-1044-3


