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Abstract—Advancements in surveillance technologies are piv-
otal in addressing the growing demands for real-time monitor-
ing and actionable insights across industries such as security,
public safety, and traffic management. This review explores
existing research and technologies in real-time person detec-
tion, attribute analysis, and semantic description generation,
highlighting their applications, limitations, and gaps. It further
presents a novel system integrating YOLOv8 for efficient object
detection, OpenCV for targeted attribute analysis, and Qwen2VL
for rich vision-language understanding, coupled with Sentence-
BERT for semantic search. This integrated approach addresses
key challenges including latency, scalability in processing complex
queries, and dynamic environment adaptability. We discuss the
technical advantages, computational considerations, particularly
for scaling VLMs, and challenges in complex scenarios like
dense crowds. Future directions include integrating emotion
recognition, multilingual capabilities, and more sophisticated
predictive analytics to enhance system utility and proactive
security measures.

I. INTRODUCTION

The increasing prevalence of surveillance systems has trans-

formed public safety, urban management, and event mon-

itoring. However, traditional systems often provide limited

actionable insights, failing to meet the demands for real-time

detection combined with descriptive analysis and contextual

understanding. This limits their effectiveness in dynamic, com-

plex scenarios where simply detecting a person is insufficient.

This review focuses on recent advancements in systems

aiming to bridge this gap by integrating real-time person

detection with description generation. We emphasize the con-

vergence of deep learning object detection, computer vision

attribute analysis, and sophisticated vision-language models

(VLMs). The primary objective is to identify current trends,

technological capabilities, inherent challenges (including com-

putational scalability and real-world robustness), and research

gaps. Based on this analysis, we present a scalable, modular

system design that integrates state-of-the-art components to

provide richer, searchable insights compared to traditional

surveillance tools or standalone detection models.

II. LITERATURE REVIEW

This review employs a systematic approach: literature

search across major databases (IEEE Xplore, Springer, CVPR)

using keywords like YOLOv8, real-time object detection,

vision-language models, semantic surveillance, attribute anal-

ysis; inclusion criteria focusing on real-time capabilities, se-

mantic feature extraction, and system integration; data extrac-

tion of methodologies, performance metrics (mAP, latency),

and findings; comparative analysis evaluating detection ac-

curacy, processing speed, scalability, and adaptability; and

synthesis to identify trends, challenges, and research gaps

guiding the proposed system.

A. AI-Driven Surveillance Platforms: Applications and Ethi-

cal Context

Large-scale AI surveillance deployments provide context for

capabilities and societal considerations:

• Clearview AI: Demonstrates the power of large-scale

facial recognition for law enforcement but faces intense

scrutiny regarding privacy violations due to its controver-

sial, unconsented scraping of public web images.

• Amazon Rekognition & Microsoft Azure Cognitive

Services: Offer broad, cloud-based AI capabilities (de-

tection, facial analysis) enabling scalable solutions. How-

ever, documented concerns regarding potential demo-

graphic biases in their algorithms and the potential for

misuse highlight the critical need for fairness, account-

ability, and transparency in deploying such technologies

at scale [24].

These examples underscore the demand for automated analysis

but also establish a crucial backdrop of ethical responsibili-

ties concerning data privacy and algorithmic bias that must

be considered in developing and deploying any surveillance

technology, including the system proposed herein.

B. Core Technologies in Person Analysis

Advancing beyond basic detection requires integrating spe-

cialized technologies:

1) Object Detection Frameworks: The Case for YOLOv8:

Real-time object detection is the foundation. While two-stage

detectors like Faster R-CNN [4] improved accuracy via Region

Proposal Networks (RPNs), their sequential nature often limits

speed. YOLOv8 [1], representing the evolution of the You

Only Look Once paradigm, offers distinct advantages for

real-time applications. Its single-stage architecture processes

the entire image grid simultaneously to predict bounding

boxes and class probabilities directly, eliminating the separate
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proposal generation step. Furthermore, YOLOv8 incorporates

highly optimized backbone networks (e.g., based on CSPNet

principles) and feature fusion mechanisms (like PANet

necks), along with techniques such as anchor-free detec-

tion heads. This architectural efficiency translates directly to

significantly higher inference speeds (Frames Per Second

- FPS) at comparable accuracy levels (mAP) on standard

benchmarks [10] compared to most two-stage detectors. While

transformer-based detectors like DETR [25] offer novel end-

to-end approaches, their computational demands, particularly

the self-attention mechanism’s quadratic complexity, often

result in higher latency, making highly optimized CNN archi-

tectures like YOLOv8 generally more suitable for resource-

constrained edge deployments or applications with strict real-

time demands.

2) Attribute Analysis Techniques: Leveraging OpenCV: Un-

derstanding attributes (gender, clothing type/color) adds valu-

able semantic detail. Lightweight models available via libraries

like OpenCV [5], such as the widely used face.caffemodel and

gender_deploy.prototxt (often based on foundational work like

[8]), provide efficient means for basic attribute classification

on detected regions. Their speed makes them suitable for

integration into real-time pipelines. However, it is crucial to

acknowledge their limitations in uncontrolled environments.

These models often learn representations based on holistic

facial appearance or the expected geometric arrangement

of key features. Consequently, their reliability can decrease

under challenging conditions common in dynamic surveil-

lance:

• Occlusion (e.g., masks, sunglasses, hats, partial view due

to crowds) directly obscures the features the model relies

upon.

• Significant Pose Variations (non-frontal views) alter

the appearance and relative position of facial features

compared to the training data distribution.

• Low Resolution and Poor Lighting can degrade feature

quality beyond the model’s ability to discern relevant

patterns.

Therefore, while useful for providing quick attribute hints,

outputs from such lightweight models should be interpreted

with caution, potentially requiring confidence thresholding or

fusion with other cues in a robust system design.

3) Vision-Language Models for Semantic Understanding:

Generating human-like descriptions requires deeper compre-

hension. Vision-Language Models (VLMs) excel here. Models

like CLIP [26] learn aligned image-text embeddings useful

for zero-shot tasks. More advanced VLMs like Qwen2VL [6]

are specifically architected for tasks like Visual Question An-

swering (VQA) and generating detailed, context-aware image

captions. Applied to detected person ROIs (as shown in Fig. 2,

Fig. 3), these models can produce rich textual descriptions cap-

turing appearance, inferred actions, and interactions, moving

significantly beyond simple object tags or basic attributes [11],

[12], [13], [14], [15].

C. Synthesis and Identified Gaps

The review highlights potent individual components but

reveals critical gaps in integration and deployment:

• Integrated Systems: Few systems seamlessly combine

high-speed detection, targeted attribute analysis, *and*

rich VLM-generated descriptions with semantic search

capabilities into a cohesive, real-time pipeline.

• Semantic Queryability: Enabling intuitive, natural lan-

guage search based on appearance, actions, or context

described textually remains underdeveloped compared to

metadata tag searching.

• Robustness in the Wild: Ensuring consistent perfor-

mance of all components (especially attribute analysis

and description) under real-world dynamism (lighting,

pose, occlusion) is an ongoing challenge.

• Efficiency and Scalability: Balancing the high computa-

tional cost of advanced VLMs (significant GPU memory

demands and teraFLOP computations) with real-time

constraints is a major hurdle, especially for large-scale,

multi-camera deployments.

These gaps underscore the need for architectures like the

proposed system, focusing on modular integration, efficient

component selection where possible, and strategies to manage

computational load for advanced features. Table I provides

further context by comparing related research efforts.

III. TRENDS, CHALLENGES, AND RESEARCH GAPS

A. Trends

• Increasing adoption of modular, scalable architectures.

• Integration of VLMs for enhanced descriptive analytics

and semantic search.

• Dominance of high-performance real-time detectors like

YOLO variants.

B. Challenges

• Adapting systems robustly to dynamic environmental

variations (lighting, occlusion, pose).

• Computational bottlenecks in attribute analysis pipelines

and especially VLM inference at scale.

• Limited integration of advanced features (e.g., emotion

recognition, multilingual support) in deployable systems.

• Handling high-density crowd scenarios effectively (dis-

cussed further in Section V).

C. Research Gaps

• Seamless integration of real-time detection with deep

semantic analysis and description.

• Development of intuitive, efficient query mechanisms for

VLM-generated descriptive data.

• Scalable deployment strategies for computationally inten-

sive components like VLMs across many streams.
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IV. PROPOSED SYSTEM

Addressing the identified gaps, the proposed system in-

tegrates YOLOv8 [1], OpenCV [5], Qwen2VL [6], and

Sentence-BERT [27] into a cohesive pipeline for enhanced

real-time person analysis (Fig. 1).

Architecture Overview: Input video frames are processed

sequentially and concurrently. YOLOv8 performs initial per-

son detection. For each detected person’s ROI, lightweight

attribute analysis (e.g., gender) is performed using OpenCV

modules, while the more computationally intensive Qwen2VL

model generates a detailed textual description. These outputs

are associated with the detection instance. The generated

descriptions and associated metadata are stored persistently.

The descriptions are then embedded using Sentence-BERT,

with the resulting embeddings indexed in a suitable data

store for efficient semantic retrieval based on natural language

queries.

Component Roles:

• YOLOv8: Provides the foundational high-speed, accurate

person detection.

• OpenCV: Offers efficient extraction of specific, prede-

fined attributes using fast, lightweight models.

• Qwen2VL: Generates rich, nuanced, context-aware tex-

tual descriptions, capturing details beyond simple at-

tributes. Acknowledging its computational cost, its invo-

cation might be triggered selectively or at intervals (see

Section V).

• Sentence-BERT: Enables powerful semantic search by

converting textual descriptions and user queries into a

common vector space for similarity matching.

Workflow: The process involves:

1) Frame Ingestion.

2) YOLOv8 Detection to obtain bounding boxes.

3) ROI Extraction based on bounding boxes.

4) Parallel processing for each detected person:

a. Pass ROI to OpenCV modules for attribute classifi-

cation.

b. Pass ROI to Qwen2VL to generate a textual descrip-

tion.

5) Data Persistence: Store the associated data (bounding

box, timestamp, attributes, generated description) persis-

tently.

6) Indexing for Search: Index the generated description

using Sentence-BERT, storing the resulting vector em-

bedding in a data store optimized for efficient similarity

search (e.g., a vector database).

7) User provides a natural language query.

8) Embed the query using Sentence-BERT.

9) Perform vector similarity search against the indexed

description embeddings in the data store.

10) Retrieve ranked results (matching persons with their

associated data/frames).

This integrated workflow aims to deliver not just detection

but actionable, searchable semantic insights managed through

appropriate data persistence and indexing strategies.

Fig. 1. System Architecture Flow Diagram: Illustrates the pipeline from
input processing via YOLOv8 (Detection), OpenCV (Attribute Analysis),
and Qwen2VL (Description Generation) to Semantic Search using Sentence-
BERT, implying data storage/indexing.

V. SYSTEM CAPABILITIES, CHALLENGES, AND

COMPARATIVE POSITIONING

The proposed system architecture offers unique strengths

but also faces practical challenges inherent in real-time, com-

plex visual analysis.

Capabilities:

• Integrated Semantic Analysis: Moves beyond simple

detection by combining attributes and rich VLM descrip-

tions within a single pipeline.

• Real-Time Feasibility: Leverages the speed of YOLOv8

and allows strategies (e.g., frame analysis intervals, tested

at 5s) to manage the computational load of components

like Qwen2VL, enabling near real-time operation on

capable hardware (preliminarily tested on Intel i7/RTX

4060).

• Semantic Querying: Integrates Sentence-BERT for intu-

itive natural language search over generated descriptions,

enhancing data retrieval beyond keyword matching.

Challenges and Considerations:

• VLM Scalability: While feasible for single streams

with interval processing, scaling the Qwen2VL descrip-

tion generation across numerous cameras concurrently

presents a major computational challenge due to its high

GPU/memory demands. Distributed processing, model

optimization (quantization, distillation), or adaptive trig-

gering mechanisms would be crucial for large-scale de-

ployment.

• High-Density Crowds: Such scenarios pose difficulties.

Severe inter-person occlusion can degrade YOLOv8’s

detection accuracy and makes isolating individuals for re-

liable attribute analysis (via OpenCV or VLM) extremely

challenging. Furthermore, the computational load of gen-

erating descriptions via Qwen2VL increases linearly (or

worse, if analysis complexity grows) with the number of

detected persons, potentially creating bottlenecks in dense

scenes. Strategies like selective description generation

(e.g., focusing on individuals near an event zone or

matching a basic query filter) might be necessary.

• Robustness of Components: As discussed (Sec II.B.2),

lightweight attribute analyzers have inherent limitations.

While VLMs are generally more robust, their descriptive

accuracy can also degrade under extreme occlusion, very

low resolution, or unusual contexts not well-represented

in their training data. System reliability depends on the

robustness of each pipeline stage.
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Comparative Positioning: This system distinguishes itself

through its specific focus on integrating multiple analysis

modalities for enriched, searchable output. Compared to cloud

platforms (Rekognition, Azure), it prioritizes potential edge

deployment (reducing latency) and offers deeper semantic

descriptions via VLM coupled with dedicated semantic search,

rather than just predefined tags/attributes. Unlike special-

ized systems (Clearview AI) focused narrowly on facial

identification, our approach targets broader person analysis

(appearance, context) without relying on potentially privacy-

invasive identity databases. Relative to standard detection

systems, it adds significant value through integrated attribute

analysis, detailed VLM descriptions, and semantic retrieval.

While research studies in Table I explore individual aspects,

this work emphasizes the synergistic integration of these

components into a functional pipeline designed for enhanced

situational awareness. Our preliminary evaluation confirms the

*feasibility* of this integration, while acknowledging that rig-

orous, quantitative benchmarking against these diverse systems

requires standardized protocols and further development.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper reviewed real-time person detection and descrip-

tion systems, highlighting advancements and persistent gaps,

particularly in integrating deep semantic analysis with efficient

detection and querying. We proposed a system architecture

combining YOLOv8, OpenCV, Qwen2VL, and Sentence-

BERT, offering a pathway towards more insightful and search-

able surveillance analytics. The system demonstrates the fea-

sibility of integrating these powerful components, providing

capabilities beyond traditional detection, including attribute

analysis, rich textual descriptions, and natural language se-

mantic search. Key strengths lie in this integration, its adapt-

ability through modular design, and the potential for real-time

operation with appropriate hardware and processing strategies.

Acknowledging the computational challenges, especially in

scaling VLMs and handling dense crowds, and the inherent

limitations of individual components in extreme conditions,

significant avenues for future work exist:

• Predictive Analytics: Moving beyond reactive analysis

by integrating temporal reasoning. Future work includes

leveraging aggregated data (e.g., trajectories derived from

tracking detections over time, recurring semantic descrip-

tions of behavior/appearance) to train models capable

of forecasting potential security events or anomalies.

This could involve identifying unusual loitering patterns,

detecting anomalous crowd dynamics, or recognizing

sequences of described actions potentially indicative of

risks, enabling proactive intervention strategies.

• Emotion Recognition: Integrating models to analyze

facial expressions or body language for more nuanced

behavioral understanding and context-aware insights.

• Multilingual Support: Adapting VLM components and

query interfaces to support multiple languages, broaden-

ing accessibility and applicability.

• Optimization for Scalability: Developing and evaluating

techniques like model quantization, knowledge distil-

lation, efficient multi-stream scheduling, and adaptive

triggering for VLM inference to make large-scale deploy-

ment more practical.

• Enhanced Robustness: Investigating methods to im-

prove component robustness in challenging conditions,

potentially through multi-modal fusion or uncertainty-

aware processing.

• Rigorous Evaluation: Conducting comprehensive bench-

marking on standardized datasets to quantify end-to-end

performance, including detection accuracy, description

quality (BLEU, ROUGE), attribute accuracy, search pre-

cision/recall, and latency under various loads.

This work lays a foundation for developing more intelligent

surveillance systems capable of deeper understanding and in-

teraction, while carefully considering the associated technical

and ethical dimensions.

Fig. 2. "The person in the image is wearing a patterned dress. The dress
appears to be of a dark color with a floral or paisley design. The dress covers
the person’s upper body and legs." (Example Qwen2VL output)

Fig. 3. "The person in the image is wearing glasses and a dark-colored shirt.
The shirt appears to be a solid color, possibly black or dark blue. The glasses
are a dark frame, which contrasts with the lighter background of the shirt. The
person’s hair is short and neatly styled. The overall appearance is professional
and neat." (Example Qwen2VL output)
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TABLE I
COMPARATIVE ANALYSIS OF SELECTED STUDIES

Study Objective Methodology Advantages Limitations

Efficient Support System
for Hearing Disabled Using
CNN [9]

Gesture detection CNN-based real-time detection High accuracy (99%), real-time
processing

Limited to static gestures,
dataset-specific

Real-time Evaluation of Ob-
ject Detection Models [10]

Compare YOLOv8,
Faster R-CNN,
DETR

mAP, inference speed
comparison

Detailed performance metrics
on diverse datasets

DETR struggles with large
datasets, slower inference

Automatic Description Gen-
eration from Images [13]

Generate textual de-
scriptions

Vision-language models High-quality captions, semantic
search potential

Often limited to offline
processing, lacks real-time
adaptability

Age and Gender Prediction
Using Caffe and OpenCV
[8]

Predict age/gender Caffe model and OpenCV Lightweight and efficient Sensitive to low-res images,
pose, occlusion (as discussed)

Fully Convolutional Region
Proposal Networks (Con-
cept Ref [4])

Enhance region pro-
posals

Convolutional networks for
proposal generation

Improves Faster R-CNN
efficiency

Adds computational overhead
compared to single-stage

Deep Learning Object De-
tection Surveys (e.g., [16])

Analyze
advancements

Comparison of architectures Comprehensive overview Often lack specific real-time
integration/implementation
insights

Proposed Solution (This
Work)

Real-time detection,
attribute analysis,
description,
semantic search

Integrated YOLOv8, OpenCV,
Qwen2VL, Sentence-BERT

Real-time feasibility, integrated
semantic richness, queryability

Requires tuning, GPU needed
(VLM), preliminary eval,
known challenges (crowds,
VLM scaling)

TABLE II
MODEL COMPARISON (YOLOV8 VS ALTERNATIVES)

Model/Feature Primary Task Type Real-time Perf. Accuracy Metric

(Typical)

Limitations

YOLOv8 [1] Object Detection Real-time detector (1-
stage CNN)

Very Fast (low latency) mAP (detection) High Struggles w/ extreme
occlusion/overlap; Less
context than VLM

Faster R-CNN [4] Object Detection 2-stage detector w/
RPN

Slower than YOLO mAP (detection) High Higher computational
cost, slower inference
latency

DETR [25] Object Detection Transformer-based
detector

Slowest mAP (detection)
Competitive

Higher latency,
complex training,
struggles dense scenes

ViTs (general) [26] Classification / Feature
Extraction

Transformer-based
vision model

Moderate Accuracy (classifica-
tion) High

Needs large datasets;
Often used as
backbone, not
standalone detector

Qwen2VL [6] VQA / Description
Gen

Vision-Language
Model

Slow BLEU/ROUGE/METEOR
(text gen) High

High computational
cost (GPU required),
scaling challenge,
potential biases

Note: Performance and accuracy metrics are task-dependent. Direct comparison across different primary tasks requires careful consideration of relevant

benchmarks. Scalability and dynamic environment flexibility vary based on specific implementation and fine-tuning. ViTs are often used as backbones (e.g.,
within CLIP or some detectors).
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