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Abstract— The increasing demand for efficient and 

autonomous healthcare logistics in remote and inaccessible 

regions has driven advancements in vision-based navigation for 

Micro Aerial Vehicles (MAVs). This research presents a fully 

vision-based object detection system for MAVs, eliminating the 

need for additional sensors such as LiDAR or GPS. The 

proposed system leverages the YOLOv8 model to enable real-

time detection, target identification, and obstacle avoidance. A 

structured methodology, including dataset preparation, 

annotation, model training, and evaluation, ensures high 

accuracy and robust performance. The system achieves a mean 

Average Precision of 94.9% in multi-class detection and 

operates effectively in real-time environments. Experimental 

results demonstrate the feasibility of deploying a vision-only 

navigation framework for autonomous medicine delivery, 

reducing hardware complexity and operational costs. The 

proposed approach enhances scalability, making it suitable for 

broader applications in disaster relief, surveillance, and smart 

logistics. 
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I. INTRODUCTION  

The delivery of essential healthcare services to remote 
and underserved regions remains a significant challenge due 
to infrastructural barriers and geographic obstacles [1]. 
Traditional logistics systems often struggle to provide timely 
and efficient healthcare access, particularly in areas with 
limited transportation networks. Micro Aerial Vehicles 
(MAVs) offer a promising solution by leveraging 
autonomous navigation and vision-based object detection to 
overcome these challenges [2], [3]. 

Vision-based navigation enables MAVs to detect objects, 
identify targets, and avoid obstacles without relying on 
additional sensors such as LiDAR or GPS. This eliminates 
hardware complexity and reduces operational costs, making 
autonomous MAVs a viable option for applications such as 
medicine delivery, disaster relief, and surveillance [4], [5]. 
The key to achieving efficient autonomous navigation lies in 
developing an accurate, real-time object detection framework 
tailored for MAVs operating in dynamic environments [6], 
[7]. 

This research focuses on designing and implementing a 
vision-only object detection system for MAVs using the 
YOLOv8 model. YOLOv8 is a state-of-the-art deep learning-
based object detection framework that balances speed, 
accuracy, and computational efficiency, making it suitable 
for real-time applications [8], [9]. The system is trained using 
annotated datasets and optimised for robust performance in 
real-world conditions. Key objectives include enhancing 
detection accuracy, reducing computational overhead, and 

ensuring scalability for deployment in resource-constrained 
settings [10], [11].  

The remainder of this paper is structured as follows: 
Section II presents a review of related work on vision-based 
object detection and MAV navigation. Section III outlines 
the methodology, including dataset preparation, model 
training, and evaluation metrics. Section IV discusses 
experimental results, including real-time detection 
performance and accuracy metrics and provides a detailed 
discussion of the findings, identifying challenges and areas 
for improvement. Finally, Section V concludes the paper 
with insights into future research directions and potential 
applications of the proposed framework. 

II. LITERATURE REVIEW 

A. Vision-Based Object Detection for MAV Navigation 

The use of vision-based object detection in MAVs has 
gained significant attention due to its ability to navigate 
autonomously without relying on external sensors such as 
LiDAR or GPS. Traditional MAV navigation systems have 
primarily relied on sensor fusion, combining LiDAR, GPS, 
and IMUs for localization and obstacle detection [1]. 
However, these methods increase hardware complexity and 
cost, making them less suitable for resource-constrained 
applications. 

Recent advancements in deep learning-based object 
detection models have enabled vision-only navigation, 
improving real-time target identification and obstacle 
avoidance. The YOLO (You Only Look Once) series has 
emerged as a leading framework due to its balance of speed 
and accuracy. Redmon et al. introduced YOLOv1 as a real-
time object detection system that significantly reduced 
detection latency compared to region-based methods [2]. 
Over subsequent iterations, YOLOv8 has been optimised 
with anchor-free designs and decoupled detection heads, 
enhancing its performance in complex environments [3]. 

Some studies have demonstrated the feasibility of vision-
based navigation for UAVs in healthcare logistics. Zou and 
Liu [4] reviewed vision-only systems for MAVs, 
emphasising their cost-effectiveness and adaptability. 
Similarly, Yu et al. [5] explored target tracking in UAV-
based healthcare logistics using YOLO models, highlighting 
their effectiveness in identifying delivery points with high 
accuracy. Despite these advancements, challenges remain in 
optimising detection models for real-time deployment on 
MAVs with limited computational resources. 

B. Real-Time Object Detection in UAVs 

Real-time object detection is crucial for MAVs, as it 
ensures dynamic adaptability to environmental changes. 
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Single-shot detection frameworks such as SSD (Single Shot 
MultiBox Detector) [6] and EfficientDet [7] have been 
explored for UAV applications. SSD provides a tradeoff 
between speed and accuracy, while EfficientDet improves 
detection efficiency using neural architecture search. 

Liu and Zhang [8] demonstrated real-time object 
detection in UAVs using YOLOv4 for agricultural 
monitoring. Their study confirmed YOLO’s capability to 
maintain high detection accuracy while operating in real 
time. Similarly, Handa and Grabner [9] investigated UAVs 
for medical supply delivery, utilising object detection to 
identify landing zones and obstacles. These studies reinforce 
the importance of lightweight models that balance 
computational efficiency and detection performance. 

C. Challenges in Vision-Only Navigation 

Despite significant progress, vision-only navigation faces 
challenges such as occlusion handling, varying lighting 
conditions, and high computational demands. Zhao et al. [10] 
proposed a lightweight detection algorithm for UAV aerial 
imagery, addressing the issue of detecting small and complex 
objects in real-world scenarios. Their approach incorporated 
dynamic convolution techniques to improve feature 
extraction. 

Furthermore, research by Sun and Li [11] explored 
optimisation strategies for lightweight object detection 
networks in UAVs, including model pruning and 
quantisation. Their findings suggest that reducing model 
complexity without sacrificing accuracy remains a key 
challenge in deploying vision-based systems on MAVs. 

D. Applications of Vision-Based Navigation 

The applications of vision-based navigation extend 
beyond healthcare logistics. UAVs equipped with vision-
based detection have been utilised in disaster relief 
operations, surveillance, and precision agriculture. Wu and 
Yang [12] investigated UAV-based medicine delivery, 
demonstrating its potential to improve healthcare 
accessibility in remote areas. Additionally, Xu et al. [13] 
explored autonomous UAV navigation for smart logistics, 
highlighting the scalability of vision-based detection models 
in urban environments. 

The literature emphasises the growing potential of vision-
based MAV navigation in various domains. However, 
optimising object detection models for lightweight, real-time 
deployment remains a research priority. This study builds 
upon existing advancements by implementing a vision-only 
object detection system using YOLOv8, aiming to enhance 
real-time navigation performance while minimising 
hardware dependencies. 

III. METHODOLOGY 

The methodology for developing a vision-only object 
detection framework for MAVs using the YOLOv8 model is 
presented. The framework is designed to enable autonomous 
navigation without external sensors by incorporating dataset 
preparation, model training, real-time detection, and 
performance evaluation [1], [2]. 

A. Dataset Preparation 

The dataset used for training consisted of images 
collected under diverse conditions to improve model 
robustness. Annotation was performed using the LabelImg 
tool, where bounding boxes were manually drawn around 
target objects [3]. To ensure consistency, all images were 
resized to 640×480 pixels. Data augmentation techniques, 
including flipping, rotation, and scaling, were applied to 
enhance generalisation and improve model performance in 
varying environments [4], [5]. 

B. Model Training 

The YOLOv8 model was configured using data.yaml file, 
specifying dataset paths and class labels. The model was 
trained for 100 epochs with a batch size of 8 and an adaptive 
learning rate of 0.001 using the Stochastic Gradient Descent 
(SGD) optimiser [6]. The training process was conducted on 
an NVIDIA GPU to optimise computational efficiency, with 
loss reduction and accuracy monitored throughout the 
training phase [7], [8]. 

C. Real-Time Object Detection 

For real-time detection, video frames were processed 
sequentially using OpenCV. The YOLOv8 model analysed 
each frame, generating bounding boxes and class labels. 
Detection confidence was controlled using a threshold of 0.2, 
while an Intersection over Union (IoU) threshold of 0.5 
ensured accurate bounding box overlap [9]. The detected 
objects were visualised in real-time with annotated bounding 
boxes, and detection results were logged in CSV format for 
further analysis [10]. 

D. Performance Evaluation 

The system's effectiveness was assessed using key 
performance metrics, including precision, recall, F1-score, 
and mean Average Precision (mAP) [11]. Precision and 
recall were used to evaluate detection accuracy, while the 
F1-score provided a balanced measure of model 
performance. The mAP50 and mAP50-95 metrics quantified 
the system’s ability to detect objects across multiple IoU 
thresholds [12]. Confusion matrices were generated to 
identify misclassifications and analyse model reliability [13]. 

E. Tools and Hardware 

The implementation utilised Ultralytics for model 
training, OpenCV for video processing, and Matplotlib for 
performance visualisation [14]. The model was trained on an 
NVIDIA GPU, while real-time detection was performed on 
an Intel CPU to ensure efficiency in deployment [15]. 

This methodology provides a structured approach to 
implementing a vision-only object detection framework for 
MAVs. By leveraging YOLOv8, the system achieves high 
accuracy, real-time detection, and computational efficiency, 
making it suitable for autonomous navigation applications. 
The next topic describes experimental results and validation 
of the proposed system. 

IV. RESULTS AND DISCUSSION 

The experimental results and performance analysis of the 
vision-only object detection framework for MAVs are 
discussed. The evaluation focuses on detection accuracy, 
real-time processing efficiency, and system reliability under 
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different environmental conditions. Performance metrics, 
including precision, recall, F1-score, and mean Average 
Precision (mAP), are used to assess the model’s effectiveness 
[1], [2]. Additionally, confusion matrices, evaluation curves, 
and real-time detection outputs (Fig. 1 and Fig. 2) are 
analyzed to identify strengths and areas for improvement [3]. 

 

Fig. 1. Results of 500 images for a single class 

 

Fig. 2. Results of 500 images for multiple class 

A. Model Performance Evaluation 

The performance of the YOLOv8-based object detection 
framework was evaluated on both single-class and multi-
class datasets. In the single-class scenario, the system 
achieved a precision of 99%, indicating a high degree of 
accuracy in detecting the target object. For multi-class 
detection, the model demonstrated strong generalization, 
achieving a mean Average Precision at a 50% IoU threshold 
(mAP50) of 94.9% [4]. The evaluation curves, including 
precision-recall (Fig. 3 and Fig. 4) and F1-confidence graphs 
(Fig. 5 and Fig. 6), validated the model’s robustness across 
varying detection confidence thresholds [5]. 

 

Fig. 3. Precision-recall curve of 500 images for a single class 

 

 

Fig. 4. Precision-Recall curve of 500 images for multiple class 

 

Fig. 5. F1-confidence curve of 500 images for a single class 

 

Fig. 6. F1-confidence curve of 500 images for multiple class 

B. Confusion Matrix Analysis 

The confusion matrices for both single-class and multi-
class detection were generated to analyze detection accuracy 
and misclassifications. In the single-class case (Fig. 7), the 
matrix exhibited minimal false positives and false negatives, 
confirming the model's reliability in identifying the target 
object [6]. In multi-class detection (Fig. 8), the model 
maintained a balanced performance across all categories, 
with high classification accuracy for different object types. 
The normalized confusion matrix further illustrated 
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consistent precision across varying environmental conditions 
[7]. 

 

Fig. 7. Confusion matrix of 500 images for a single class 

 

Fig. 8. Confusion matrix of 500 images for multiple class 

C. Real-Time Object Detection Performance 

The system was tested on real-time video feeds to 
evaluate its applicability in MAV-based navigation. The 
YOLOv8 model processed video frames efficiently, with a 
detection latency of less than 30 ms per frame, ensuring 
seamless real-time performance [8]. Bounding boxes and 
class labels were correctly assigned to detected objects, and 
annotated video outputs (Fig. 9 and Fig. 10) confirmed the 
system's ability to operate in dynamic environments. 
Detection confidence thresholds were optimized to balance 
precision and recall, minimizing false detections while 
maintaining high accuracy [9]. 

 

Fig. 9. Predicted labels for a single class 

 

Fig. 10. Predicted labels for multiple class 

D. Challenges and Limitations 

Despite the high detection accuracy, certain challenges 
were observed during real-time deployment. Objects 
partially occluded by environmental factors occasionally 
resulted in misclassifications or missed detections. 
Additionally, detection performance slightly degraded in 
low-light conditions, highlighting the need for further model 
optimization and dataset augmentation [10]. Computational 
efficiency remains a key consideration, as MAVs operate 
with limited onboard processing capabilities. Future 
improvements may include model quantization and hardware 
acceleration to optimize performance on edge devices [11]. 

E. Discussion 

The results indicate that the proposed vision-only object 
detection framework is highly effective for MAV-based 
applications. The YOLOv8 model provides an optimal 
balance between speed and accuracy, making it suitable for 
real-time navigation and obstacle avoidance [12]. Compared 
to traditional sensor fusion approaches, this framework 
reduces hardware complexity and cost while maintaining 
reliable performance. Further research can explore the 
integration of adaptive learning strategies to enhance 
robustness in varying operational conditions [13]. 

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025  |  DOI: 10.63169/GCARED2025.p27  |  Page 193



This study demonstrates the feasibility of a vision-only 
object detection system for autonomous MAVs, achieving 
high detection accuracy and real-time efficiency. While 
challenges such as occlusions and low-light conditions exist, 
the proposed approach offers a scalable and cost-effective 
solution for applications in healthcare logistics, disaster 
relief, and smart surveillance [15]. The next topic presents 
the conclusions and future research directions. 

V. CONCLUSION  

This study presents a vision-only object detection 
framework for Micro Aerial Vehicles (MAVs) using the 
YOLOv8 model, enabling autonomous navigation without 
reliance on external sensors such as LiDAR or GPS. The 
system was evaluated for detection accuracy, real-time 
performance, and computational efficiency, achieving a 
mean Average Precision (mAP50) of 94.9% for multi-class 
detection and 99% precision for single-class detection [1], 
[2]. The framework demonstrated seamless real-time 
operation with minimal latency, validating its applicability in 
healthcare logistics, disaster relief, and other autonomous 
navigation scenarios [3], [4]. 

The results confirm that a vision-only approach can 
effectively replace traditional sensor fusion-based navigation 
systems, reducing hardware complexity and cost while 
maintaining high detection reliability [5]. The study 
highlights the advantages of YOLOv8’s anchor-free design 
and decoupled detection heads in improving real-time 
performance. However, challenges such as occlusions, low-
light conditions, and computational constraints were 
identified, emphasizing the need for further optimisation [6], 
[7]. 

To enhance the robustness and efficiency of the proposed 
framework, future research will focus on the following areas: 

 Integration of Semantic Segmentation: Incorporating 
segmentation techniques, such as DeepLab or U-Net, 
can improve object differentiation and obstacle 
avoidance in complex environments [8]. 

 Lightweight Model Optimization: Techniques such as 
model quantization, pruning, and knowledge 
distillation will be explored to reduce computational 
overhead for deployment on resource-constrained 
MAV platforms [9]. 

 Adaptive Learning and Reinforcement Strategies: 
Implementing reinforcement learning approaches like 
Proximal Policy Optimization (PPO) can enable 
MAVs to adapt dynamically to new environments and 
improve decision-making [10]. 

 Diverse Dataset Expansion: Training the model on 
more diverse datasets, including varying weather 

conditions, terrains, and occlusion scenarios, will 
improve its generalization capability [11]. 

 Hardware Acceleration: Investigating GPU-
accelerated inference and edge AI solutions, such as 
TensorFlow Lite or PyTorch Mobile, will enhance 
real-time detection efficiency on MAVs with limited 
processing power [12]. 
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