
Leveraging Machine Learning for Enhanced

Android Malware Detection and Analysis

1st Manjari Sharma

School of Computing Science and Artificial Intelligence)

VIT Bhopal University)

Sehore 466114, India

manjari.sharma2021@vitbhopal.ac.in

2nd Muneeswaran V

School of Computing Science and Artificial Intelligence

VIT Bhopal University

Sehore 466114, India

muneeswaran@vitbhopal.ac.in

3rd Narottam Das Patel

School of Computing Science and Artificial Intelligence

VIT Bhopal University

Sehore 466114, India

narottamdaspatel@vitbhopal.ac.in

4th Ajay Kumar Phulre

School of Computing Science and Artificial Intelligence

VIT Bhopal University

Sehore 466114, India

ajaykumarphulre@vitbhopal.ac.in

Abstract—The spread of Android devices around the world
has led to a startling increase in targeted, specialized cyber-
attacks. Device operation, data security, and user privacy are
all threaten by these attacks. Advanced machine learning (ML)-
based techniques are required to fully detect malicious behavior
because traditional signature-based malware detection methods
are frequently unsuccessful against developing threats. In order
to create reliable malware detection algorithms, this study makes
use of a large dataset of Android application parameters,
such as permissions, operating system characteristics, security
precautions, and data destinations. Support Vector Machine
(SVM), Random Forest (RF), Decision Tree (DT), XGBoost, Naive
Bayes, and three hybrid models—SVM+DT, SVM+Naive Bayes,
and SVM+XGBoost—were among the eight machine learning
classifiers that were assessed. Additionally, ensemble techniques
like RandomForest + CatBoost were used to improve detection ac-
curacy.Accuracy, precision, recall, and F1 score were among the
measures used to thoroughly assess each model. Of the separate
classifiers, Random Forest performed well (accuracy: 95.49%,
F1 score: 96.00%), but XGBoost had the greatest accuracy
(95.61%) and F1 score (96.13%). Improved resilience was shown
by hybrid models, with SVM+XGBoost obtaining an F1 score
of 96.28% and SVM+DT producing reliable outcomes (F1 score:
94.39%). With better accuracy and F1 scores, the RandomForest
+ CatBoost combo proved to be the most successful malware
detection method, surpassing all individual and hybrid classifiers.

Index Terms—Android System, Malware Detection, ML Clas-
sifiers, SVM, Ensemble Models, Feature Engineering in Malware
Detection

I. INTRODUCTION

Malware has made Android, the most popular mobile op-

erating system, a top target. The system’s features and app

permissions are used by cybercriminals to compromise user

security and privacy. [2] While the open-source nature of

Android benefits developers, it also introduces security holes

that malicious software might exploit. This makes it increas-

ingly important to identify new and changing malware threats.

Conventional malware detection techniques, like antivirus soft-

ware, frequently miss novel threats. These techniques rely

on identifying patterns that are well-known, which changed

malware can readily get around. However, machine learning

(ML) has demonstrated promise in identifying both safe and

malicious programs through behavior analysis, even when the

virus employs novel concealment strategies. [1]

After the boom of smartphones, mobile computing has been

never the same courtesy the Android operating system, which

in mid 2016 controlled 86.2% of the global market. With its

app store hosting more than 2.2 million apps, Android’s huge

app stores also allowed the exploitation of gaping security

holes by hackers in the form of trojans, worms and spyware.

Shockingly, fresh spyware for Android is made available

rapidly every nine seconds. As much as Android’s permissions

settings may limit some actions, they are designed to give

much protection to the users, some persistent permissions can

still pose a threat. [6] Dynamic analysis is distinct from other

malware detection techniques (static, dynamic and hybrid) in

its ability to monitor real time behavior and detect concealed

threats. It is a very important asset for boosting mobile security

in Android app.

With over 3.8 billion smartphones sold around the world in

2021 and more than 72% of these phones using Android, it

is apparent that viruses and androids are a nasty combination.

Even by 2020, android already had 2.86 million apps, and

16000 malware applications were increasing each day. This

substantiates the need for advanced malware detection meth-

ods. [11] Detection of malicious software can be analyzed

using different methods, namely, static analysis, dynamic and

hybrid methods. The research investigates the performance

of a number of machine learning classifiers (SVM, KNN,

DT, RF, NB), and deep learning GRU models using the

CICAndMal2017 dataset, with an emphasis on permission and

API-call features for Android malware identification. As the

use of the Internet grows rapidly probably fueled further by

the smartphone technological revolution, so has the number of

Android users across the globe. By 2021, Android emerged

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 203

Fig. 1. Proposed Model Framework: A step-by-step process from dataset
preparation to final output, including feature Engineering, model training and
evaluation for performance assessment

as the most utilized mobile operating system, with up to

2 billion devic es fitted with this platform surpassing ios

and even windows. One of the reasons why Android is the

most popular platform on mobile devices is the variety of

applications available for users of all ages and interests. [12]

In a way, such growth has in turn made Android a magnet for

malware which constitutes grave risk’s to user’s security and

privacy. For instance, Android malware encompasses a wide

range of malicious activities including sending premium SMS

loads, data theft, remote control of devices. What is probably

most shocking is the volume of malware samples that grew

from 1 million samples in 2019 to 3.5 million samples in early

2021 which reemphasizes the need to have more proficient

detection methods.

II. LITERATURE REVIEW

Extensive research has been conducted to enhance An-

droid malware detection using both static and dynamic anal-

ysis techniques. [4] Various studies have employed machine

learning and deep learning models to achieve high detection

accuracy by leveraging features such as permissions, API

calls, and contextual data. A summary of key prior works,

their methodologies, and performance metrics is provided in

Table I, highlighting the progression and diversity in detection

approaches across recent years. [18]

III. METHODOLOGY

A. Dataset

he dataset includes 4,464 Android applications with 328 dis-

tinct features. These features capture a variety of permissions,

operational details, and behavioural traits, most represented as

binary or integer values. The ”Label” column assigns each

application to one of two categories: ”Malware” or ”Benign,”

supporting a binary classification approach. Key features in-

clude permissions like ACCESS FINE LOCATION and AC-

CESS NETWORK STATE, as well as application-specific

properties like billing and shortcut-related permissions. [28]

This dataset provides a detailed view of permission usage

and behavioral patterns in Android applications. While its high

dimensionality—327 numerical features and one categorical

label—poses challenges, it also makes the dataset a valuable

tool for developing machine learning models aimed at detect-

ing malicious behavior in Android applications. [19]

B. Preprocessing

1) Encoding Categorical Variables: The Label column in

the dataset classifies applications as “Malware” or “Benign.”

To make it suitable for machine learning algorithms, this

categorical data is converted into numeric values using label

encoding:

i) Malware = 1

ii) Benign = 0

Other features are already numeric, so no further encoding is

required.

2) Feature Selection: With 328 features [14] in the dataset,

not all are equally useful for detecting malware. To enhance

model performance and efficiency:

i) Correlation Analysis is used to remove highly correlated

features to avoid redundancy.

ii) Variance Thresholding eliminates features with minimal

variability, as they contribute little to classification. [25]

iii) Feature Importance Techniques like Random Forest

and XGBoost are applied to rank features based on their

relevance, keeping only the most significant ones [3].

3) Feature Extraction: To handle the large number of

features, additional techniques are applied:

i) Principal Component Analysis (PCA): Reduces the

dimensionality of the data while retaining most of its

variance, making training faster and more effective.

ii) Domain Knowledge Features: Aggregated features such

as the total number of permissions or network-related

permissions are created to provide deeper insights into

application behaviour.

4) Data Splitting: The dataset is divided into training and

testing sets to evaluate the models:

i) 80% Training Set: Used to train the machine learning

models.

ii) 20% Testing Set: Used to test the performance of trained

models on unseen data.

Stratified splitting ensures the class distribution of “Malware”

and “Benign” remains consistent across the subsets, addressing

potential class imbalance issues. Optionally, further splitting

creates a validation set for hyperparameter tuning and to avoid

overfitting.

C. Model Selection

Support Vector Machines (SVM), Random Forest (RF),

Naı̈ve Bayes (NB), Decision Tree (DT), and Extreme Gradient

Boosting (XGBoost) are the five machine learning methods

that were chosen for this investigation. Each of these models

has been proven effective in classification tasks, particularly

in the detection of Android systems. The diversity of these

models makes them ideal candidates for ensemble learning,

as they bring different strengths to the table. [10]

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 204

TABLE I
SUMMARY OF RELATED WORK

Ref Year Author Country Objective Contribution Methodology Conclusion/Result

[2] 2013 Naser Peiravian &
Xingquan Zhu

USA To detect Android
malware by com-
bining permissions
and API calls as
features

Demonstrated high
detection accuracy
using a static analysis
approach without
dynamic tracing

Machine learning
classification using
permission and API call
features extracted from
each app

Achieved 96.39% accu-
racy, showing that com-
bining permissions and
API calls enhances mal-
ware detection effective-
ness

[18]
2017 Jamada Arvind

Mahindru & Paramvir
Singh

India Detect Android
malware using
dynamic
permissions and
ML

Created a dataset
with 123 dynamic
permissions from
11,000 apps;
evaluated multiple
ML models

Dynamic permission
extraction at app install
and start-up, Naı̈ve
Bayes, J48, RF, Simple
Logistic, K-star

Simple Logistic
achieved the highest
accuracy of 99.7%,
proving effectiveness of
dynamic permissions
and ML techniques

[9] 2017 Mohammed K. Alza-
ylaee, Suleiman Y.
Yerima, Sakir Sezer

Northern
Ireland

Investigate
Android malware
detection using ML
on real devices vs
emulators

Developed tool for
dynamic feature
extraction on real
phones; compared
detection rates on
phone vs emulator

Dynamic analysis
on real devices and
emulators using ML
(Random Forest, SVM,
etc.)

Phone-based detection
achieved up to 0.926
F-measure, 93.1% TPR;
better performance
than emulator due to
anti-emulation

[10]
2017 Mariam Al Ali, Da-

vor Syetinoyic, Zeyar
Aung, Suryani Luk-
man

UAE Develop an
anomaly-based
malware detection
system for Android
using ML

Created framework
using ML algos
to classify apps as
benign or malware
based on system
metrics

Dynamic analysis on
Android with ML algos
(Decision Tree, SVM,
RF)

RF and SVM provided
the best detection per-
formance among tested
algorithms

[11]
2021 Omar N. Elayan, Ah-

mad M. Mustafa
Jordan Develop a deep

learning-based
Android Malware
detection method
using GRU

Introduced a deep
learning approach
for Android malware
detection with static
analysis of API calls
and permissions,
achieving 98.2%
accuracy

Static analysis of API
calls and permissions;
tested classifiers (SVM,
KNN, DT, RF, NB)
and deep learning GRU
model with 10-fold
cross-validation

GRU-based model
outperformed traditional
classifiers, showing high
accuracy for Android
malware detection

[12]
2022 Mohammed N.

AlJarrah, Qussai M.
Yaseen, Ahmad M.
Mustafa

Jordan,
UAE

To develop a
context-aware ML-
based approach for
Android Malware
detection

Introduced a
new dataset of
Android app features,
including contextual
features, and applied
Info Gain to select
the top 50 most
relevant features

Used static feature
extraction, Information
Gain for feature
reduction, and multiple
classifiers (RF, SVM,
etc.)

Achieved 99.4% accu-
racy using contextual in-
formation with API calls
and permissions, outper-
forming state-of-the-art
models

[14]
2013 Hyo-Sik Ham, Mi-

Jung Choi
Korea Improve malware

detection with
optimized features

Developed optimized
features for malware
detection and com-
pared machine learn-
ing classifiers

Evaluated classifiers
(Random Forest, SVM,
etc.) and used feature
selection

Random Forest showed
best accuracy (98%
TPR, ¡0.01% FPR)

1) Support Vector Machine (SVM): SVM is a powerful

algorithm that performs well in high-dimensional data. It sep-

arates “Malware” and “Benign” applications using a decision

boundary or hyperplane, making it suitable for our dataset.

2) Random Forest (RF): Random Forest is an ensemble

method that creates multiple decision trees and predicts based

on majority voting. Its ability to manage large datasets with

many features makes it a strong contender.

3) Naı̈ve Bayes (NB): Naive Bayes is based on probability

and Bayes’ theorem. It is simple, computationally efficient,

and works well with binary features, which are common in

our dataset.

4) Decision Tree (DT): Decision Tree splits data into

branches based on feature values to make classifications. It

is easy to understand and quick to train, but it requires careful

tuning to avoid overfitting.

5) Extreme Gradient Boosting (XGBoost): XGBoost is a

gradient-boosting algorithm known for its speed and high

accuracy. It is highly effective for datasets with many features,

making it an excellent choice for malware detection.

Each model was assessed using metrics like accuracy,

precision, recall, and F1 score to measure their performance

and identify the most effective approach for malware detection.

D. Ensemble Learning

To enhance the accuracy and robustness of our malware

detection system, we implemented hybrid ensemble models.

These models combine the strengths of individual classifiers

to improve overall detection performance:

1) SVM + Decision Tree (SVM+DT): This hybrid model

leverages the ability of SVM to handle complex decision

boundaries and the interpretability of Decision Trees, creating

a more balanced and versatile classifier.

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 205

2) SVM + Naive Bayes (SVM+NB): The combination of

SVM’s decision boundary capabilities with the probabilistic

nature of Naive Bayes enhances the detection of malicious

behavior, particularly in imbalanced datasets.

3) SVM + XGBoost (SVM+XGBoost): This ensemble

model combines the power of SVM and XGBoost, resulting

in high accuracy and strong detection capabilities, especially

in handling large, high-dimensional datasets.

The ensemble models were also evaluated using standard

metrics like accuracy, precision, recall, and F1 score. Notably,

SVM+XGBoost demonstrated the best performance among all

hybrid models, achieving a high F1 score, making it the most

robust solution for malware detection.

E. Evaluation Metrics

The performance of the models was assessed using the

following metrics, derived from the dataset results:

i) Accuracy: Measures the proportion of correctly classi-

fied instances. The highest accuracy was achieved by

the hybrid SVM + XGBoost model (96.12%), followed

closely by individual XGBoost (95.82%) and Random

Forest (95.75%).

ii) Precision: Indicates the percentage of predicted positives

that are truly positive. The SVM + XGBoost model

attained the highest precision (97.20%), highlighting its

effectiveness in minimizing false positives.

iii) Recall: Represents the ratio of correctly identified pos-

itives to the total actual positives. While Naive Bayes

exhibited the highest recall (98.16%), it came at the cost

of reduced precision, leading to a lower overall F1 Score.

iv) F1 Score: Combines precision and recall into a single

measure of performance. The SVM + XGBoost model

demonstrated the best balance, with the highest F1 Score

of 96.56%, followed by XGBoost (96.30%) and Random

Forest (96.24%).

v) Confusion Matrix: A breakdown of predictions into

true positives, false positives, true negatives, and false

negatives, offering insights into classification errors. The

confusion matrices for the top models (e.g., XGBoost and

SVM + XGBoost) highlighted their ability to correctly

classify most instances with minimal misclassifications.

Fig. 2. Confusion matrices comparing SVM + XGBoost and standalone
XGBoost models, showing that the ensemble model achieves improved
classification performance by reducing false positives and false negatives.

IV. EXPERIMENTAL RESULTS

A. Model Performance

A comprehensive evaluation of individual models on the

Android malware dataset is summarized in Table II. Metrics

include Accuracy, Precision, Recall, and F1 Score.

TABLE II
COMPARISON OF MODEL PERFORMANCE METRICS

Model Accuracy Precision Recall F1 Score

SVM 95.15% 96.64% 94.74% 95.68
Random Forest 95.75% 96.43% 96.05% 96.24%
Decision Tree 93.96% 94.61% 94.74% 94.67%
XGBoost 95.82% 96.68% 95.92% 96.30%
Naive Bayes 69.03% 65.04% 98.16% 78.24%

B. Ensemble Model Performance

The results for ensemble models demonstrate improved

performance due to combining the strengths of individual

classifiers, as shown in Table III. [24]

TABLE III
COMPARISON OF ENSEMBLE MODEL PERFORMANCE METRICS

Accuracy Precision Recall F1 Score

94.48% 95.25% 95.00% 95.13%
69.10% 65.10% 98.16% 78.28%
96.12% 97.20% 95.92% 96.56%

Fig. 3. Performance comparison of individual and hybrid models based on
Accuracy, Precision, Recall, and F1 Score, showing that the SVM + XGBoost
ensemble outperforms all other models across most metrics.

C. Cross-Validation Results

Cross-validation (using k-fold with k = 5) provided consis-

tent evaluation across training and validation datasets, ensuring

robustness. Table IV shows average metrics across folds for

SVM, Random Forest, and XGBoost.

TABLE IV
COMPARISON OF CROSS-VALIDATION RESULTS

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

SVM 94.90 96.50 94.70 95.58
Random Forest 95.60 96.40 96.10 96.25
XGBoost 96.00 96.70 95.90 96.30

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 206

D. ROC-AUC Analysis

1) ROC Curve Comparison for All Models: The ROC

curves of all models show their ability to distinguish between

malware and benign applications. The XGBoost model had the

highest AUC score, closely followed by the SVM + XGBoost

ensemble. [5]

AUC Scores:

• SVM: 0.947

• Random Forest: 0.955

• Decision Tree: 0.940

• XGBoost: 0.961

• Naive Bayes: 0.750

Fig. 4. ROC curve comparison for all individual models, showing that the
XGBoost classifier achieved the highest Area Under the Curve (AUC = 0.961),
indicating superior discrimination capability compared to other models.

2) ROC Curve Comparison for Ensemble Models: Ensem-

ble models achieved slightly higher AUC scores than indi-

vidual classifiers, demonstrating their superior classification

ability:

AUC Scores:

• SVM + Decision Tree: 0.948

• SVM + Naive Bayes: 0.751

• SVM + XGBoost: 0.963

V. DISCUSSION

The results of the study demonstrate the effectiveness of

machine learning techniques in identifying Android malware.

We used a dataset of 4,464 applications with 328 distinct

variables to assess the performance of both hybrid ensem-

ble models and individual classifiers. In terms of accuracy

and generalizability, the SVM + XGBoost ensemble model

fared better than the other approaches, obtaining the highest

ROC-AUC and F1 Score (96.56%). By effectively fusing

the decision boundary optimization of SVM with the feature

importance and robustness of XGBoost, the hybrid solution

proved the effectiveness of ensemble learning for this task [7]

[21]

Fig. 5. ROC curve comparison for ensemble models, demonstrating that the
SVM + XGBoost combination achieved the highest AUC (0.963), indicating
superior detection capability compared to other hybrid approaches.

Results from cross-validation and ROC curve analysis

demonstrated that the ensemble models worked effectively

over a range of data subsets. The potential of these models

for practical application in malware detection systems is shown

by their high generalization to previously observed data. The

SVM + XGBoost model consistently outperformed individual

classifiers, highlighting the benefits of combining comple-

menting attributes in hybrid architectures [13]. Comparative

benchmarking across different classifiers further validates the

model’s performance [26]. Frameworks like MLDroid have

also confirmed the value of multi-technique ML models for

Android malware detection [17].

However, this study does have certain limitations. Despite

the dataset’s size, it may not accurately capture how Android

malware and harmless application behaviors are constantly

evolving. Additionally, training ensemble models still poses

a computational challenge even though feature selection and

extraction strategies addressed the dataset’s high dimension-

ality [7]. Recent reviews have highlighted trends in evolving

malware techniques and detection gaps [15].

Future work should focus on the following directions:

1) Dataset Evolution Evaluate the proposed models on

more recent and diverse datasets to ensure applicabil-

ity to contemporary malware threats [15]. Leveraging

datasets like Drebin or AndroZoo could provide a more

representative benchmark for real-world scenarios.

2) Model Adaptability Explore adaptive learning methods,

such as online or transfer learning, to ensure that models

remain effective against new and emerging malware

strains [27] [23].

3) Real-Time Detection Investigate the integration of these

models into real-time malware detection systems, bal-

ancing computational efficiency with high detection ac-

curacy [20].

4) Advanced Feature Engineering Incorporate dynamic

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 207

features, such as runtime behaviours and API call

sequences, to complement the static features used in

this study. In future, image-based features may also

be explored for further enhancement of detection accu-

racy [8]. Multimodal features, including code structure

and permissions, can also be utilized for better accu-

racy [22].

5) Adversarial Resilience Evaluate and enhance the mod-

els’ resilience to adversarial attacks, ensuring robustness

against sophisticated malware designed to evade detec-

tion [16].

This study contributes a robust methodology for Android

malware detection and highlights the advantages of hybrid

ensemble models. By addressing the outlined limitations and

exploring future directions, the proposed approach can be fur-

ther refined to create scalable, adaptive, and resilient malware

detection systems. [8]

VI. CONCLUSION

This research effectively demonstrated the use of machine

learning in Android malware detection. The SVM + XG-

Boost hybrid ensemble outperformed other models, achieving

the highest F1 Score of 96.56% and demonstrating strong

accuracy. This result highlights the strength of combining

classifiers to enhance detection performance and robustness.

The study also showed the value of feature selection and

extraction in managing high-dimensional data, leading to bet-

ter efficiency and accuracy. Cross-validation and ROC- AUC

analysis confirmed the models’ ability to generalize across data

subsets effectively. Despite these successes, the dataset used

has limitations due toits static nature and potentially outdated

representation of malware patterns. Future work should focus

on utilizing updated datasets, incorporating dynamic features

like runtime behaviors, and improving resistance to adversarial

attacks. These findings provide a solid base for creating

advanced malware detection systems capable of addressing

modern cybersecurity challenges.

REFERENCES

[1] S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection
using parallel machine learning classifiers,” in 2014 Eighth International

Conference on Next Generation Mobile Apps, Services and Technologies,
pp. 37–42, IEEE, 2014.

[2] N. Peiravian and X. Zhu, “Machine learning for android malware detec-
tion using permission and API calls,” in 2013 IEEE 25th International

Conference on Tools with Artificial Intelligence, pp. 300–305, IEEE,
2013.

[3] J. Li et al., “Significant permission identification for machine-learning-
based android malware detection,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 7, pp. 3216–3225, 2018.
[4] K. Liu et al., “A review of android malware detection approaches based

on machine learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020.
[5] F. M. Darus, N. A. A. Salleh, and A. F. M. Ariffin, “Android malware

detection using machine learning on image patterns,” in 2018 Cyber

Resilience Conference (CRC), pp. 1–2, IEEE, 2018.
[6] A. Mahindru and P. Singh, “Dynamic permissions based android mal-

ware detection using machine learning techniques,” in Proceedings of

the 10th Innovations in Software Engineering Conference, pp. 202–210,
2017.

[7] Y. Zhang, Y. Yang, and X. Wang, “A novel android malware detection
approach based on convolutional neural network,” in Proc. 2nd Int. Conf.

on Cryptography, Security and Privacy, pp. 144–149, 2018.

[8] H. M. Ünver and K. Bakour, “Android malware detection based on
image-based features and machine learning techniques,” SN Applied

Sciences, vol. 2, no. 7, p. 1299, 2020.
[9] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real phone:

Android malware detection using machine learning,” in Proc. 3rd ACM

Int. Workshop on Security and Privacy Analytics, pp. 65–72, 2017.
[10] M. Al Ali, D. Svetinovic, Z. Aung, and S. Lukman, “Malware detection

in android mobile platform using machine learning algorithms,” in 2017

Int. Conf. on Infocom Technologies and Unmanned Systems (ICTUS),
pp. 763–768, IEEE, 2017.

[11] O. N. Elayan and A. M. Mustafa, “Android malware detection using deep
learning,” Procedia Computer Science, vol. 184, pp. 847–852, 2021.

[12] M. N. AlJarrah, Q. M. Yaseen, and A. M. Mustafa, “A context-
aware android malware detection approach using machine learning,”
Information, vol. 13, no. 12, p. 563, 2022.

[13] A. S. Shatnawi et al., “An android malware detection leveraging machine
learning,” Wireless Communications and Mobile Computing, vol. 2022,
p. 1830201, 2022.

[14] H. S. Ham and M. J. Choi, “Analysis of android malware detection
performance using machine learning classifiers,” in 2013 Int. Conf. on

ICT Convergence (ICTC), pp. 490–495, IEEE, 2013.
[15] A. Muzaffar et al., “An in-depth review of machine learning based

Android malware detection,” Computers & Security, vol. 121, p. 102833,
2022.

[16] H. Bostani and V. Moonsamy, “Evadedroid: A practical evasion attack on
machine learning for black-box android malware detection,” Computers

& Security, vol. 139, p. 103676, 2024.
[17] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android mal-

ware detection using machine learning techniques,” Neural Computing

and Applications, vol. 33, no. 10, pp. 5183–5240, 2021.
[18] Z. Ma et al., “A combination method for android malware detection

based on control flow graphs and machine learning algorithms,” IEEE

Access, vol. 7, pp. 21235–21245, 2019.
[19] H. Han et al., “Enhanced android malware detection: An SVM-based

machine learning approach,” in 2020 IEEE Int. Conf. on Big Data and

Smart Computing (BigComp), pp. 75–81, IEEE, 2020.
[20] N. C. Lê et al., “A machine learning approach for real time Android

malware detection,” in 2020 RIVF Int. Conf. on Computing and Com-

munication Technologies (RIVF), pp. 1–6, IEEE, 2020.
[21] T. Lu et al., “Android malware detection based on a hybrid deep learning

model,” Security and Communication Networks, vol. 2020, p. 8863617.
[22] T. Kim et al., “A multimodal deep learning method for android malware

detection using various features,” IEEE Trans. on Information Forensics

and Security, vol. 14, no. 3, pp. 773–788, 2018.
[23] E. B. Karbab et al., “MalDozer: Automatic framework for android

malware detection using deep learning,” Digital Investigation, vol. 24,
pp. S48–S59, 2018.

[24] J. D. Koli, “RanDroid: Android malware detection using random ma-
chine learning classifiers,” in 2018 Technologies for Smart-City Energy

Security and Power (ICSESP), pp. 1–6, IEEE, 2018.
[25] J. Li et al., “Significant permission identification for machine-learning-

based android malware detection,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 7, pp. 3216–3225, 2018.
[26] S. Fallah and A. J. Bidgoly, “Benchmarking machine learning algorithms

for android malware detection,” Jordanian Journal of Computers and

Information Technology, vol. 5, no. 3, 2019.
[27] Y. Chen, Z. Ding, and D. Wagner, “Continuous learning for android

malware detection,” in 32nd USENIX Security Symposium (USENIX

Security 23), pp. 1127–1144, 2023.
[28] Revaldo, D., Android Malware Detection using ML [Dataset]. Kaggle.

[https://www.kaggle.com/datasets/dannyrevaldo/android-malware-
detection- dataset

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025 | DOI: 10.63169/GCARED2025.p29 | Page 208

