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Abstract— This comparative study investigates the 
use of six neural network architectures-ResNet50, 
VGG16, EfficientNetB0, Vision Transformer, Swin 
Transformer and DenseNet -for classifying images in the 
Intel Image dataset. The research conducted tends to 
discover the disadvantages as well as advantages of each 
model in terms of accuracy, computational efficiency, 
and versatility. By implementing and fine-tuning these 
architectures on the chosen dataset, we assess their 
ability to categorize various image types. This study 
provides insights of the balance in between model 
complexity and as well as performance, offering valuable 
guidance for researchers and professionals in selecting 
appropriate neural network architectures for diverse 
image classification tasks. 

 
Keywords : Deep learning, CNN, ViT , ResNet50, 
EfficientNet, VGG16. 

 
I. INTRODUCTION 

Image classification has become an important task in  
computer vision, with wide-ranging applications in fields 
such as healthcare, autonomous vehicles, and security 
systems[1][2][3]. As visual data becomes increasingly 
complex and voluminous, the need for efficient and accurate 
image classification models has grown significantly. 
Convolutional Neural Networks (CNNs) over the time have 
emerged as the leading approach for tackling image 
classification challenges, demonstrating remarkable results 
on various benchmark datasets[4][5]. 
 
This study examines three prominent CNN architectures and 
one transformer model: ResNet50, VGG16, EfficientNet, 
and Vision Transformer (ViT). These models represent 
significant landmarks for the evolution of DL(deep learning) 
to take place for computer vision tasks: 
 
1. ResNet50: Introduced by He et al. (2016), ResNet 
(Residual Network) helped people to focus and address the 
issue of vanishing gradients which occurs in deep networks 
when they make use of skip connections[6]. The 50-layer 
ResNet50 architecture has been able to show exceptional 
performance in the task of image classification. 
 

2.VGG16: It was created by Simonyan and 
Zisserman(2014), VGG16 is known for its simple design 
and depth[7]. It makes use of convolutional filters(3 X 3) 
which are smaller and stacked in increasing depth, 
emphasizing the importance of network depth in achieving 
high performance. 
 
3. EfficientNet, created by Tan and Le (2019), introduced a 
novel method(scaling method) that uniformly scales 
networks based on width, depth, and 
resolution[8].State-of-the-art accuracy was achieved through 
this approach on various benchmarks while maintaining 
efficiency. 
 
4. Vision Transformer (ViT) created by Dosovitskiy et al. 
(2020), applying a transformer-based architecture to image 
classification. ViT helps us in dividing the images in patches 
and the use of self-attention helps to model long-range 
relationships. 
 
5.Swin Transformer is a hierarchical (Vit) vision 
transformer that uses self-attention within shifted windows. 
This method substantially lowers computational cost while 
preserving good representational capacity. Its design enables 
scalable modeling of high-resolution images and has been 
shown to be effective on many vision tasks by extracting 
local and global information. 
 
6.DenseNet (Dense Convolutional Network) proposes dense 
connectivity in which every layer takes inputs from all the 
previous layers. This architecture promotes feature reuse, 
enhances gradient flow, and decreases the number of 
parameters. By directly connecting layers, DenseNet avoids 
the vanishing gradient issue and allows for more efficient 
and accurate training of deep neural networks. 
 
The main goal of the study performed is to evaluate these 
four architectures using the Intel Image dataset, examining 
their effectiveness, efficiency, and adaptability. By 
implementing and optimizing each model on the selected 
dataset, we aim to provide a comprehensive analysis of their 
strengths and limitations. 
 

1 
 
 

G-CARED 2025 - First Global Conference on AI Research and Emerging Developments

G-CARED 2025  |  DOI: 10.63169/GCARED2025.p45  |  Page 308
ISBN: 978-93-343-1044-3



This research is motivated by the need to understand how 
different deep learning models perform on specific datasets, 
as model selection can significantly impact the outcome of 
image classification projects. The results of this study will 
help to provide advantages to researchers in computer 
vision, while also aiding in the selection of required models 
for various image classification tasks. 
 

II. LITERATURE SURVEY 
ResNet50, a deep residual neural network, has demonstrated 
impressive results in tasks involving image classification 
[9], [10], [11]. Making use of residual connections helps 
address the issue of vanishing gradients and also provide 
help in training of more deeper models as compared to 
earlier CNNs [12]. This increased depth enables the 
extraction of complex features, enhancing accuracy on large 
and varied datasets [9]. However, this also leads to higher 
computational requirements for both training and inference 
[12]. The Research conducted points out that data 
augmentation can greatly enhance its accuracy and 
robustness [13], [14]. The performance can be depending on 
the dataset and task, and in some instances, other 
architectures may outperform it in terms of speed or 
accuracy [15]. 
 
VGG-16, another popular CNN, is characterized by a simple 
design with sequential convolutional and max-pooling 
layers [9], [10], [11]. Although it is not as deep as 
ResNet50, it performs effectively in image classification 
tasks [6] and offers quicker training and inference [3].The 
ability to learn complex features might be limited due to Its 
shallower architecture might limit its ability to learn 
complex features, potentially resulting in lower accuracy on 
challenging datasets [9]. Like ResNet50, its performance is 
influenced by data augmentation [10], [14] and the 
characteristics of the dataset [15]. The decision between the 
two often involves balancing VGG-16's speed against 
ResNet50's superior accuracy [15]. 
 
EfficientNetB0, part of a CNN family optimized for 
providing higher accuracy with significantly lesser 
parameters than ResNet50 and VGG-16 while the depth, 
width, and resolution being scaled up,[15],[16]. Its 
efficiency results in faster training, reduced memory usage, 
and suitability for real-time or resource-constrained 
environments [17]. Studies suggest it can particularly on 
large datasets surpass ResNet50 and VGG-16 in terms of 
both accuracy and as well as the efficiency,[15]. 
Nonetheless, its performance still relies on dataset 
characteristics, augmentation, and tuning [10], [14], and it 
may not excel in all tasks [15] 
 
This review compared ResNet50, VGG-16, EfficientNetB0, 
and ViTs for outdoor object classification. CNNs like 
ResNet50 and VGG-16 provide strong accuracy and 
robustness, while EfficientNetB0 is efficient for 
resource-limited settings [15]. ViTs are adept at capturing 
long-range dependencies but face challenges with 
computational demands and variability in outdoor scenes 
[19]. The choice of architecture depends on application 
needs, resources, and datasets. Future research should focus 
on standardized benchmarks, hybrid models, and improving 

ViT efficiency. Broader comparisons across diverse datasets 
and object classes will help clarify each model’s strengths 
and limitations, supporting progress in this evolving field. 

Vision Transformers (ViTs) are increasingly utilized across 
industrial, medical, and agricultural sectors for their strong 
feature extraction capabilities. While CNNs have been 
leading in industrial inspection, ViTs now match or exceed 
them in complex, data-scarce tasks, such as railway freight 
car damage assessment [24]. In medicine, ViTs have 
outperformed CNNs in detecting diabetic retinopathy and 
segmenting brain tumors due to their non-local receptive 
fields [25], [26]. In agriculture, ViTs like ConvViT and Swin 
Transformer have demonstrated high accuracy in crop 
disease and rice classification [27], [28]. For security and 
surveillance, ViTs have enhanced human activity 
recognition and drone threat detection, achieving superior 
accuracy and efficiency over CNNs [29], [30]. These 
advancements underscore ViTs’ growing applicability in 
real-world scenarios. 

In recent times, there has been a growing interest in utilizing 
deep learning, especially convolutional neural networks 
(CNNs) and vision transformers (ViTs), for tasks related to 
medical image analysis. A significant innovation in this area 
is the creation of Swin Unet3D, which combines Vision 
Transformer elements with 3D convolutional frameworks to 
manage intricate volumetric data like brain MRIs [33]. This 
hybrid design leverages the spatial capabilities of 
convolutions and the comprehensive receptive field of 
transformers, leading to enhanced segmentation outcomes 
on the BraTS2021 dataset. Similarly, researchers have 
investigated improved EfficientNet architectures for 
detecting multi-grade brain tumors, achieving up to 98.6% 
accuracy while considerably lowering the number of 
parameters, underscoring EfficientNet's capacity to balance 
performance with computational efficiency [34]. A pivotal 
advancement in this field is the Swin Transformer, a 
hierarchical vision transformer that uses an innovative 
shifted window approach to make use of local attention 
linearly along with computational complexity which 
concerns image size [37]. This architecture allows it to 
effectively scale to high-resolution images and has shown 
strong results on various benchmarks, including ImageNet, 
COCO, and ADE20K. Building on this foundation, the 
introduction of Swin Transformer V2 represents a 
significant advancement in scalable vision modeling [35]. 
By utilizing techniques such as residual-post-norm with 
cosine attention and log-spaced position bias, Swin V2 
enables effective training on ultra-high-resolution images, 
outperforming previous models on benchmarks like 
ImageNet and COCO.  

Meanwhile, hybrid architectures that combine ViT and CNN 
components have gained popularity. For example, a model 
that integrates both approaches was proposed for detecting 
tuberculosis in chest X-rays, achieving a high classification 
accuracy of 91.1% and demonstrating the synergy between 
local (CNN) and global (ViT) feature extraction [36]. 
Additionally, studies have highlighted the importance of 
model optimization and data strategies. For instance, efforts 
to optimize the EfficientNet model not only focused on 
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architecture but also included interpretability tools like 
Grad-CAM, enhancing clinical usability through transparent 
decision-making processes [34]. Similarly, employing data 
augmentation and focal loss in training hybrid models for 
chest X-ray anomaly detection has been shown to improve 
model generalization, particularly when dealing with 
imbalanced datasets [36]. These advancements collectively 
indicate a trend in model design where transformers, 
convolutions, and interpretability tools are increasingly 
being integrated to meet the demands of critical medical 
imaging tasks. While models like ResNet50 and 
EfficientNet remain reliable baselines, recent 
transformer-based and hybrid approaches—especially those 
based on Swin architectures—demonstrate promising 
improvements in both accuracy and efficiency, with an 
increasing emphasis on scalability and real-world clinical 
application. 

III. EXPERIMENT 
The study which is being conducted examines the 
comparative effectiveness of four leading deep learning 
models – ResNet50, VGG-16, EfficientNetB0, and Vision 
Transformers (ViTs) – in classifying outdoor object images. 
The research utilized a dataset  approximately having a size 
of 25,000 images from From Intel image classification 
dataset(kaggle), categorizing them into six classes: Glacier, 
Mountain,Buildings, Sea,Forest, and Street. 
 
The evaluation employed five key metrics: Confidence, 
Precision, Accuracy, Recall, and F1-score.  
 
Confidence: This metric represents the model's level of 
assurance in its prediction, expressed as a probability. 
 
Precision: It is a metric which is used to measure the 
correctness of favourable predictions made by a model. It is 
said to be the ratio of correct favourable predictions relative 
to the whole number of favourable predictions. 
 
Accuracy: Among the simplest classification metrics, 
accuracy is computed by taking the correct predictions(no of 
predictions) and dividing it by the total predictions made. 
 
Recall : It is utilised for assessing the capability of a model 
to faultlessly identify the suitable instances of a favourable 
class. The definition is as follows where the proportion of 
correct favourable predictions to the actual positive 
instances(Total number). 
 
F-1 Score: It is a measure that unites both precision as well 
as recall into a single value and thus provides balanced 
results of a specific model's performance. It is identified as 
the harmonic average between 2 factors that are precision 
and recall. 
 

TABLE I DETECTION METRICS FOR TRAINING OF MODELS 

Methods Accuracy Precision Recall F1-Score 

ResNet50 0.9143 0.9153 0.9170 0.9160 

VGG16 0.8900 0.829 0.8920 0.8921 

EfficientNet B0 0.8677 0.8701 0.8719 0.8703 

ViT 0.9283 0.9299 0.9303 0.9288 

Densenet 0.8827 
 

0.8858 
 

0.8853 
 

0.8843 
 

Swin 0.9257 
 

0.9275 
 

0.9273 
 

0.9274 
 

Table I displays the performance metrics for the six models 
evaluated. The (Vit) Vision Transformer performed well in 
all metrics, securing the top scores in Accuracy (0.9283), 
Precision (0.9299), Recall (0.9303), and F1-Score (0.9288). 
This outstanding performance underscores ViT's effective 
utilization of self-attention mechanisms to capture the global 
context so as to perform tasks in image classification . The 
Swin Transformer was a close second, delivering strong 
results with an Accuracy of 0.9257, Precision (Macro) of 
0.9275, Recall (Macro) of 0.9273, and F1-Score (Macro) of 
0.9274. It also achieved a high average confidence score of 
0.9455, indicating reliable predictions. ResNet50 
demonstrated competitive performance with an Accuracy of 
0.9143, Precision of 0.9153, Recall of 0.9170, and F1-Score 
of 0.9160, highlighting the benefits of residual connections 
in mitigating vanishing gradients during deep network 
training. VGG16's results were moderately lower compared 
to ResNet50 and ViT, with an Accuracy of 0.8900, Precision 
of 0.8929, Recall of 0.8920, and F1-Score of 0.8921. 
DenseNet also showed solid performance, achieving an 
Accuracy of 0.8827, Precision (Macro) of 0.8858, Recall 
(Macro) of 0.8853, and F1-Score (Macro) of 0.8843, with an 
average confidence score of 0.8804, indicating fairly 
confident predictions across classes. Lastly, EfficientNet B0 
recorded the lowest performance among the models, with an 
Accuracy of 0.8677, Precision of 0.8701, Recall of 0.8719, 
and F1-Score of 0.8703. Despite its lightweight design, 
EfficientNet B0 may need deeper variants to match the 
performance of more complex architectures in this task. 

 
(a) ResNet50                     (b)  VGG-16 

 
                   (c) EfficientNet B0                  (d) ViT 
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                          (e)Swin                      (f)Densenet       
     Fig. 1. Image Classification  results for image 1(buildings 
                class). 

In a distinct analysis of an image from the "buildings" 
category (Fig. 1), VGG16 achieved the highest classification 
confidence at 99.99%. This was closely matched by both the 
Vision Transformer (ViT) and ResNet50, each scoring 
99.98%, underscoring their reliability for this type of image. 
The Swin Transformer also performed exceptionally well, 
with a confidence score of 99.99%, equaling VGG16 and 
demonstrating its capability in capturing hierarchical 
features through shifted windows. DenseNet followed with 
a strong confidence level of 98.88%, highlighting its 
proficiency in feature reuse and dense connectivity. In 
contrast, EfficientNet-B0 showed a lower confidence of 
94.97%, indicating that while it is efficient in terms of 
parameters and speed, it may not perform as well in 
high-detail scenarios like complex building structures. 
These confidence levels illustrate the varying strengths of 
different architectures in handling specific visual categories 
and emphasize the importance of choosing the right model 
based on the data's nature. 

 
(a) Resnet50                     (b)  VGG-16 

 

 
                        (c) EfficientNet B0                       (d)  ViT 
 

                                     
             (e)Swin                                     (f)Densenet 

Fig. 2. Image Classification results of image 2(glacier class). 
 
In a concurrent evaluation of the "glacier" class image, 
shown in Fig. 2, ViT achieved the highest classification 
confidence at 99.99%, demonstrating its remarkable 
accuracy for this class. The Swin Transformer followed 
closely with a confidence of 99.97%, showcasing its ability 
to capture fine-grained patterns through hierarchical 
attention. ResNet50 maintained strong performance with 
99.54%, while DenseNet achieved a commendable 97.49%, 
utilizing its densely connected architecture for precise 
feature representation. VGG16 reached a classification 
confidence of 96.52%, indicating reliable results, and 
EfficientNet-B0 attained a confidence of 90.29%, reflecting 
slightly lower accuracy compared to the other models but 
still satisfactory for this image. These findings highlight the 
strengths of transformer-based models, particularly ViT and 
Swin, in managing intricate visual textures like glaciers. 
 

 
  fig(3-a)ResNet50(confusion matrix) 
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  fig(3-b)VGG16(confusion matrix) 
 
 

 
  fig(3-c)EfficientNet B0(confusion matrix) 
 

 
       fig(3-d)ViT(Confusion Matrix) 
 

 
              fig(3-e)Swin Transformer(Confusion Matrix) 
 

 
 
       fig(3-f)DenseNet(Confusion Matrix) 
 

IV. RESULTS 

The performance indicators of six various image 
classification models: Vision Transformer (ViT), Swin 
Transformer, ResNet50, VGG16, DenseNet, and 
EfficientNet B0. Among them, ViT recorded the best 
performance on all the most important metrics, such as 
Accuracy (0.9283), Precision (0.9299), Recall (0.9303), and 
F1-Score (0.9288). This indicates the ability of ViT to well 
learn global dependencies in images with self-attention 
mechanisms.The Swin Transformer also exhibited good 
performance, second only to ViT with Accuracy of 0.9257, 
Precision (Macro) of 0.9275, Recall (Macro) of 0.9273, and 
F1-Score (Macro) of 0.9274. It also attained the highest 
mean confidence score (0.9455), suggesting confident and 
reliable predictions. 

ResNet50 kept competitive performance levels with 
Accuracy (0.9143), Precision (0.9153), Recall (0.9170), and 
F1-Score (0.9160), confirming the strength of residual 
learning in deep convolutional networks. VGG16 and 
DenseNet performed moderately, with VGG16 performing 
marginally better than DenseNet across all metrics. VGG16 
recorded an Accuracy of 0.8900, while DenseNet recorded 
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0.8827. Their F1-Scores were 0.8921 and 0.8843, 
respectively.At the lower end of the scale, EfficientNet B0 
had the worst results with an Accuracy of 0.8677 and 
F1-Score of 0.8703. Although it has a lightweight model, its 
performance indicates that deeper models might be required 
for more complicated classification problems. 

Based on our literature review and experimental findings, 
we could conclude that ViT is particularly well-adapted for 
image classification tasks requiring high accuracy, 
especially when computational resources are not 
constrained. Secondly, the Swin Transformer ranked second 
with highly accurate (0.9257) and the best average 
confidence (0.9455), reflecting solid predictions. ResNet50 
also performed highly, leveraging its residual learning 
architecture.VGG16 and DenseNet yielded average 
performance, with DenseNet falling behind VGG16 
marginally. EfficientNet B0, being computationally 
effective, gave the poorest performance, which implies that 
more intricate tasks can demand deeper or stronger variants. 
 
Deep learning improvements have dramatically enhanced 
image classification by allowing auto feature extraction and 
decision-making. Comparative research based on various 
architectures indicates that ResNet50 beats VGG16 and 
VGG19 in classifying products, with the maximum 
accuracy of 97.33% at epoch 20 [30]. Likewise, comparison 
of EfficientNet and MobileNetV2 with the Intel Image 
Dataset showed optimization methods like scaling 
techniques and automated mixed precision training 
enhanced EfficientNet to 94.5% accuracy and MobileNetV2 
to 92% [31]. Another experiment analyzing the effect of 
learning rate adjustment reported that MobileNetV2 
surpassed EfficientNet, reaching a high 99.67% accuracy at 
epoch 50, which confirms its effectiveness in sorting 
images. The results highlight the need for proper model 
choice, fine-tuning, and optimization methods to increase 
the accuracy of classification and computation speed for 
real-world tasks like product classification, object detection, 
and pattern identification [32]. 
  

V. DISCUSSION 
We developed and tested two different custom 
Convolutional Neural Network (CNN) 
architectures—named CustomCNN and DeepCNN —to 
determine how their performance would compare on the 
Intel Image Classification dataset. The main architectural 
variation is the depth and richness of the networks: the 
original CustomCNN has three convolutional blocks with a 
maximum of 128 filters, whereas the advanced DeepCNN 
architecture stretches to five convolutional blocks, with a 
maximum of 512 filters. Both models use ReLU activations 
and batch normalization following every convolutional 
layer. DeepCNN, however, has a stronger regularization 
approach with greater dropout (0.6) and more intense data 
augmentations in the form of random affine transformations, 
vertical flips, and color jitter, along with L2 regularization 
on the Adam optimizer. With regard to performance, 
CustomCNN gained a highest training accuracy of 72.43% 
and its highest validation accuracy of 83.87% with the 
lowest validation loss of 0.5148. However, DeepCNN 
obtained a slightly better training accuracy of 72.95% and 

attained a validation accuracy of 81.53%, along with the 
lowest validation loss of 0.4855. While CustomCNN 
reached a little higher validation accuracy, DeepCNN 
showed more stable and regular training behavior in later 
epochs, suggesting better generalization ability. Importantly, 
DeepCNN's validation loss fell more progressively, 
demonstrating the advantages of deeper feature extraction as 
well as greater regularization. Such results warrant the 
addition of both models for comparative investigation, 
showing the impact of architectural depth and regularization 
on model performance and aiding more complete 
assessment of CNN-based image classification methods. 

Ensuring fairness in AI, particularly in image classification, 
is a significant issue, as biased training data can result in 
unfair outcomes, especially in critical areas like healthcare 
and security. Both CNNs and ViTs are susceptible to class 
imbalance, where classes with fewer examples experience 
reduced accuracy. To combat this, strategies such as 
adversarial debiasing, fairness-aware training, and data 
augmentation are utilized. Another ethical challenge is 
model explainability, as black-box models hinder 
transparency. Techniques in Explainable AI (XAI), 
fairness-oriented loss functions, and the curation of diverse 
datasets are crucial for the ethical deployment of AI.  

Implementing AI in practical scenarios also presents 
challenges, including data privacy, vulnerability to 
adversarial attacks, and domain shift issues. Following the 
regulations like GDPR and HIPAA is crucial when 
managing sensitive image data. Research is ongoing to 
enhance robustness against adversarial perturbations and to 
improve generalization across domains. Additionally, 
scalability becomes a challenge when deploying CNNs and 
ViTs, particularly for high-resolution data. ViTs, in 
particular, demand large datasets, which limits their 
application in environments with limited data. Techniques 
such as model compression (pruning, quantization, 
distillation) and edge AI deployment help minimize 
computational demands, while hybrid CNN-ViT models 
provide a balance between accuracy and efficiency.  

On the Intel Image Classification dataset, transfer learning 
was highly effective across all models by utilizing 
pre-trained ImageNet weights. Initial feature extraction 
results were strong, especially for ResNet50 and 
EfficientNet-B0. Performance improved further by 
selectively fine-tuning deeper layers, enabling models to 
better adapt to domain-specific features. Additionally, 
hyperparameter tuning—including learning rates, optimizers 
(Adam, AdamW), and schedulers—was crucial for 
convergence. Data augmentation and regularization methods 
like dropout and L2 weight decay also enhanced 
generalization. Overall, the combination of transfer learning, 
targeted fine-tuning, and optimized training strategies led to 
robust and scalable performance across both CNNs and 
ViTs. 

VI. CONCLUSION 
 From all the research conducted and experiments carried 
out on the image classification models—ResNet50, VGG16, 
EfficientNetB0, ViT, Swin Transformer and DenseNet—the 
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most accurate and consistent model for the work to be 
performed was identified to be the Vision Transformer. Its 
remarkable results, which were based on Accuracy, 
precision, recall, and F1-score metrics with a high 
prediction confidence for a particular class proved the 
validity of the transformation used in dealing with complex 
data.The Swin Transformer was also a strong performer, 
especially in confidence of prediction.ResNet50 also 
performed outstandingly, as it is the best alternative if a  
balance of computational efficiency with accuracy is 
needed. EfficientNetB0, being on the other side, was 
efficient with parameters but still had low confidence levels 
and relatively low accuracy compared to the rest, making it 
less competitive for highly accurate classifications. The 
classic model, VGG16, had achieved reasonable 
performance but lagged behind newer architectures.  
 
Although conventional convolutional architectures such as 
ResNet50, VGG16, and DenseNet performed well, they 
were marginally surpassed by the transformer-based models. 
EfficientNet B0, although efficient, was behind when it 
came to overall performance. Deep or more complex 
variants of EfficientNet or hybrid models combining 
convolutional and transformer-based strategies could be 
explored in future work for better classification results. 
 
In future work, training models like ViT , Swin Transformer 
ResNet50 on larger and more diverse datasets will help in 
further improving the classification performance and 
robustness. Accuracy and generalizability can be enhanced 
by using data augmentation techniques and fine-tuning 
pre-trained models on domain-specific datasets. This will 
enable these models for deployment in real-world 
applications, such as environmental monitoring, medical 
imaging, and autonomous systems, where accurate image 
classification is important.. 
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