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Abstract- 

This research proposes a multi-cancer detection 

system that leverages the strengths of deep learning 

and classical machine learning techniques to 

classify breast cancer, lung cancer, and oral cancer 

from medical images. The system is designed to 

address the challenges of early cancer diagnosis by 

providing a scalable, efficient, and interpretable 

solution. It utilizes Convolutional Neural Networks 

(CNNs) for feature extraction, followed by classical 

machine learning algorithms such as Support 

Vector Machines (SVM), and  Random Forest (RF) 

for classification. By combining the feature 

extraction capabilities of CNNs with the 

interpretability and robustness of classical machine 

learning models, the proposed framework offers a 

hybrid approach that enhances diagnostic accuracy 

and reliability. 

1. INTRODUCTION 

Cancer remains one of the leading causes of mortality 

worldwide, with early detection being critical for 

improving patient outcomes. According to the World 

Health Organization (WHO), cancer accounts for 

nearly 10 million deaths annually, and the burden is 

expected to grow in the coming decades. Early 

diagnosis significantly improves survival rates, as it 

allows for timely intervention and treatment. However, 

traditional diagnostic methods often rely on manual 

interpretation of medical images, which can be time-

consuming, subjective, and prone to human error. With 

the advent of artificial intelligence (AI), particularly 

deep learning, there has been a paradigm shift towards 

automated cancer detection systems that can analyse 

large volumes of medical data with high precision and 

efficiency. 

The system is trained and validated on publicly 

available datasets for breast cancer, lung cancer, and 

oral cancer. For breast cancer detection, the 

Dataset_BUSI_with_GT dataset is used, which 

contains ultrasound images categorized into normal, 

benign, and malignant cases. For lung cancer 

detection, the IQ-OTHNCCD lung cancer dataset is 

utilized, comprising CT scans classified into benign, 

malignant, and normal cases. For oral cancer detection, 

the Oral Cancer Dataset and OC Dataset Kaggle are 

used, containing images labelled as cancerous or non-

cancerous. These datasets are pre-processed to ensure 

consistency in image size, format, and labelling, and 

data augmentation techniques such as rotation, 

flipping, and zooming are applied to increase diversity 

and prevent overfitting. 

The CNN architecture employed for feature extraction 

consists of multiple convolutional layers, max-pooling 

layers, and fully connected layers. The model is trained 

using the Adam optimizer and categorical cross-

entropy loss for multi-class classification tasks, such as 

breast and lung cancer detection. For binary 

classification tasks, such as oral cancer detection, the 

output layer uses a sigmoid activation function. The 

features extracted by the CNN are then fed into 

classical machine learning models for classification. A 

grid search is performed to optimize hyperparameters 

for each classifier, ensuring optimal performance. For 
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instance, the SVM classifier is optimized for kernel 

type, regularization parameter (C), and gamma, while 

the Random Forest classifier is tuned for the number 

of estimators, maximum depth, and minimum samples 

split. 

The performance of the system is evaluated using 

metrics such as accuracy, precision, recall, and F1-

score. The models are validated on separate test sets to 

ensure generalizability. The results demonstrate high 

accuracy across all three cancer types, with the CNN 

model achieving an accuracy of 92% for breast cancer 

detection, 88% for lung cancer detection, and 90% for 

oral cancer detection. The SVM and Random Forest 

classifiers also perform well, achieving accuracies of 

89% and 85% for breast and lung cancer detection, 

respectively. These results highlight the effectiveness 

of combining deep learning and classical machine 

learning techniques for robust and interpretable cancer 

diagnosis. 

In addition to its high accuracy, the proposed system 

offers several advantages. First, it is scalable and can 

be adapted to different types of cancer by training on 

relevant datasets. Second, it provides interpretable 

predictions, as the classical machine learning models 

offer insights into the decision-making process. Third, 

it is computationally efficient, as the CNN is used only 

for feature extraction, reducing the complexity of the 

classification task. Finally, the system can be 

integrated into clinical workflows to assist healthcare 

professionals in making informed decisions, thereby 

improving patient outcomes. 

This research contributes to the growing field of AI-

driven healthcare by providing a scalable and efficient 

solution for multi-cancer detection. The proposed 

framework demonstrates the potential of combining 

deep learning and traditional machine learning 

methods for robust and interpretable cancer diagnosis. 

Future work will focus on expanding the system to 

include additional cancer types, incorporating 

advanced techniques such as transfer learning and 

ensemble methods, and integrating the system into 

real-world clinical settings for large-scale validation. 

By leveraging the power of AI, this research aims to 

revolutionize cancer diagnosis and improve the quality 

of healthcare delivery worldwide. 

2.  METHODOLOGY 

This system combines the deep learning capability of 

CNNs for feature extraction with the efficiency and 

interpretability of classical ML classifiers, ensuring 

robust performance for multi-cancer diagnosis from 

medical images. 

 

2.1. Dataset preparation 

The foundation of any machine learning system lies in 

the quality and diversity of the dataset used for training 

and testing. For this research, publicly available 

datasets for breast cancer, lung cancer, and oral cancer 

were carefully selected to ensure robustness and 

generalizability. Each dataset was pre-processed to 

standardize image size, format, and labeling, ensuring 

consistency across the system. 

Breast Cancer Dataset 

The Dataset_BUSI_with_GT (Breast Ultrasound 

Images Dataset) was used for breast cancer detection. 

This dataset contains ultrasound images categorized 

into three classes: normal, benign, and malignant. Each 

image is accompanied by a corresponding ground truth 

mask, which highlights the region of interest (ROI). 

The dataset is particularly useful for training models to 

distinguish between healthy tissue, benign tumors, and 

malignant tumors. 

Preprocessing Steps: 

1. Image Resizing: All images were resized to 

224×224 pixels to match the input 

requirements of the CNN model. 
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2. Normalization: Pixel values were normalized 

to the range [0, 1] to improve model 

convergence during training. 

3. Data Augmentation: To increase the diversity 

of the training data and prevent overfitting, 

augmentation techniques such as rotation (up 

to 40 degrees), horizontal and vertical 

flipping, zooming, and shifting were applied. 

4. Label Mapping: The classes were mapped to 

numerical labels: normal (0), benign (1), and 

malignant (2). 

Lung Cancer Dataset 

The IQ-OTHNCCD lung cancer dataset was utilized 

for lung cancer detection. This dataset comprises CT 

scans classified into three categories: benign, 

malignant, and normal. The dataset is diverse, 

containing images from patients with varying stages of 

lung cancer, making it suitable for training a robust 

classification model. 

Preprocessing Steps: 

1. Image Resizing: Similar to the breast cancer 

dataset, all CT scans were resized to 224×224 

pixels. 

2. Normalization: Pixel values were normalized 

to ensure consistency across the dataset. 

3. Data Augmentation: Techniques such as 

rotation, flipping, and zooming were applied 

to the training data to enhance model 

generalization. 

4. Label Mapping: The classes were mapped to 

numerical labels: benign (0), malignant (1), 

and normal (2). 

Oral Cancer Dataset 

For oral cancer detection, the Oral Cancer Dataset and 

OC Dataset Kaggle were used. These datasets contain 

images of oral lesions labeled as cancerous or non-

cancerous. The datasets are particularly useful for 

binary classification tasks, where the goal is to 

distinguish between healthy tissue and cancerous 

lesions. 

Preprocessing Steps: 

1. Image Resizing: All images were resized to 

224×224 pixels. 

2. Normalization: Pixel values were normalized 

to the range [0, 1]. 

3. Data Augmentation: Augmentation 

techniques such as rotation, flipping, and 

zooming were applied to the training data. 

4. Label Mapping: The classes were mapped to 

binary labels: non-cancer (0) and cancer (1). 

2.2. Image Preprocessing 

The first step in the prediction pipeline is 

preprocessing the input image to ensure compatibility 

with the trained models. This involves the following 

steps: 

• Image Loading: The input image is loaded 

into memory using libraries such as PIL 

(Python Imaging Library) or OpenCV. The 

image is expected to be in a standard format 

(e.g., JPEG, PNG) and can be either grayscale 

or RGB. 

• Resizing: The image is resized to 224×224 

pixels, matching the input dimensions 

required by the CNN. This ensures 

consistency with the training data and allows 

the model to process the image effectively. 

• Normalization: The pixel values of the image 

are normalized to the range [0, 1] by dividing 

each pixel value by 255. This step is crucial 

for maintaining consistency with the 

preprocessing applied during training. 

• Batch Dimension Addition: The image is 

expanded along the first dimension to create 

a batch of size 1. This is necessary because 

the CNN expects input data in batches, even 

if only a single image is being processed. 

2.3. Data Splitting Strategy 

To ensure unbiased evaluation, each dataset was split 

into training, validation, and test sets. The training set 

was used to train the models, the validation set was 

used for hyperparameter tuning and model selection, 

and the test set was used to evaluate the final 

performance of the system. The splits were performed 

as follows: 

• Training Set: 70% of the data 

• Validation Set: 15% of the data 

• Test Set: 15% of the data 

3.  MODEL SELECTION 

This research utilizes three different machine learning 

models for cancer detection, each selected based on its 

suitability for image classification tasks: 
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1. Convolutional Neural Networks (CNNs): 

CNNs are well-suited for image classification 

tasks due to their ability to learn spatial 

hierarchies and complex patterns in image 

data. 

2. Support Vector Machines (SVMs): SVMs are 

used for binary classification tasks, 

particularly when the data is linearly 

separable. In this study, SVMs are applied to 

classify images as either "Cancer" or "Non-

Cancer." 

3. Random Forests: A Random Forest classifier 

is chosen for its ability to handle both 

categorical and continuous data and provide 

robustness to overfitting, especially when 

dealing with high-dimensional data like 

images. 

3.1. CNN Architecture 

Convolutional Neural Networks (CNNs) are a class of 

deep learning models specifically designed for 

processing structured grid data, such as images. Their 

ability to automatically learn hierarchical features 

from raw images makes them highly effective for tasks 

like feature extraction and image classification. In this 

research, a CNN was employed as the backbone for 

feature extraction due to its proven performance in 

medical image analysis. The architecture of the CNN 

was carefully designed to balance complexity and 

computational efficiency, ensuring robust feature 

extraction while avoiding overfitting. 

Input Layer 

The input layer of the CNN accepts images of size 

224×224×3, where 224×224 represents the spatial 

dimensions of the image, and 3 corresponds to the 

RGB color channels. This input size was chosen to 

align with the standard input dimensions of many pre-

trained models, such as VGG and ResNet, allowing for 

potential future integration with transfer learning 

techniques. The input layer serves as the entry point for 

the raw image data, which is then passed through a 

series of convolutional and pooling layers for feature 

extraction. 

Convolutional Layers 

The CNN architecture consists of three convolutional 

layers, each designed to extract increasingly complex 

features from the input images: 

• First Convolutional Layer: This layer uses 32 

filters with a kernel size of 3×3. The small 

kernel size allows the model to capture fine-

grained details, such as edges and textures, in 

the early stages of feature extraction. Each 

convolutional operation is followed by a 

ReLU (Rectified Linear Unit) activation 

function, which introduces non-linearity and 

helps the model learn complex patterns. 

• Second Convolutional Layer: This layer uses 

64 filters with a kernel size of 3×3. As the 

network deepens, this layer captures more 

abstract features, such as shapes and patterns, 

by building on the low-level features 

extracted by the first layer. 

• Third Convolutional Layer: This layer uses 

128 filters with a kernel size of 3×3. By this 

stage, the model is capable of detecting high-

level features, such as specific structures or 

abnormalities, that are critical for 

distinguishing between different classes (e.g., 

normal, benign, and malignant tissues). 

Each convolutional layer is followed by a ReLU 

activation function, which ensures that only the most 

relevant features are propagated forward in the 

network. This helps improve the model's ability to 

learn discriminative features while maintaining 

computational efficiency. 

Max-Pooling Layers 

After each convolutional layer, a max-pooling layer 

with a pool size of 2×2 is applied. Max-pooling 

reduces the spatial dimensions of the feature maps by 

retaining only the most salient features within each 

pooling region. This serves two key purposes: 

• Dimensionality Reduction: By down 

sampling the feature maps, max-pooling 

reduces the computational complexity of the 

network, making it more efficient to train and 

deploy. 

• Overfitting Prevention: Max-pooling 

introduces a form of spatial invariance, 

making the model less sensitive to small 

translations or distortions in the input images. 

This helps improve the model's generalization 

ability. 

Flatten Layer 

The output of the final max-pooling layer is a 3D 

tensor representing high-level features extracted from 

the input image. To prepare these features for 

classification, the tensor is flattened into a 1D vector. 

This flattening operation converts the spatial structure 

of the feature maps into a format that can be processed 

by fully connected layers. 
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Fully Connected Layers 

The flattened feature vector is passed through two fully 

connected (dense) layers: 

• First Fully Connected Layer: This layer 

consists of 128 units and is responsible for 

learning high-level representations of the 

input data. The ReLU activation function is 

used to introduce non-linearity, enabling the 

model to capture complex relationships 

between features. 

• Second Fully Connected Layer: This layer 

consists of 64 units and further refines the 

feature representations. Dropout layers with a 

dropout rate of 0.5 are added after each fully 

connected layer to prevent overfitting. 

Dropout randomly deactivates a fraction of 

the neurons during training, forcing the 

network to learn more robust and 

generalizable features. 

Output Layer 

The output layer is designed based on the classification 

task: 

• Multi-Class Classification (Breast and Lung 

Cancer): For tasks involving multiple classes 

(e.g., normal, benign, and malignant), a 

SoftMax activation function is used in the 

output layer. The SoftMax function converts 

the raw output scores into probabilities, 

ensuring that the sum of the probabilities for 

all classes equals 1. The output layer consists 

of three units, corresponding to the three 

classes. 

• Binary Classification (Oral Cancer): For 

binary classification tasks (e.g., cancerous vs. 

non-cancerous), a sigmoid activation function 

is used in the output layer. The sigmoid 

function outputs a probability value between 

0 and 1, representing the likelihood of the 

positive class (cancer). The output layer 

consists of a single unit. 

Training the CNN 

The CNN was trained using the Adam optimizer, 

which is known for its adaptive learning rate 

capabilities and efficiency in handling sparse 

gradients. A learning rate of 0.001 was used to balance 

convergence speed and stability. The loss functions 

were selected based on the classification task: 

• Categorical Cross-Entropy Loss: Used for 

multi-class classification tasks (breast and 

lung cancer). This loss function measures the 

difference between the predicted probability 

distribution and the true distribution, 

encouraging the model to assign high 

probabilities to the correct classes. 

• Binary Cross-Entropy Loss: Used for binary 

classification tasks (oral cancer). This loss 

function measures the difference between the 

predicted probability and the true label, 

penalizing incorrect predictions more 

heavily. 

3.2. Classical Machine Learning Models 

Machine learning models have been widely used in 

cancer classification, particularly when computational 

efficiency and interpretability are prioritized. While 

deep learning models like Convolutional Neural 

Networks (CNNs) offer automated feature extraction 

and high classification accuracy, classical machine 

learning approaches remain relevant due to their lower 

computational requirements and robustness in small 

datasets. 

Support Vector Machine (SVM) 

SVM is a powerful supervised learning algorithm that 

identifies an optimal hyperplane to maximize the 

margin between different classes. It is particularly 

effective for high-dimensional datasets and medical 

image classification tasks. 

Random Forest (RF) 

Random Forest is an ensemble learning method that 

constructs multiple decision trees and averages their 

predictions to improve classification performance. It is 

particularly effective in handling imbalanced datasets 

and reducing overfitting. 

3.3. Training Process 

1. Model Initialization: All models (CNN, SVM, 

and Random Forest) are initialized with 

default hyperparameters. 

2. Training: Each model is trained on the training 

dataset. For CNN, the model uses stochastic 

gradient descent (SGD) optimization to 

minimize the cross-entropy loss function. 

3. Hyperparameter Tuning: The hyperparameters 

of the SVM and Random Forest models are 

optimized using grid search, with parameters 

like the kernel type (SVM) and number of trees 

(Random Forest) tuned for best performance. 

4. POST-PROCESSING AND 

INTERPRETABILITY 
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The prediction pipeline includes post-processing steps 

to enhance interpretability and usability: 

• Probability Thresholding: For binary 

classification tasks (e.g., oral cancer), a 

probability threshold (e.g., 0.5) is applied to 

convert the probability score into a binary 

decision (e.g., cancerous or non-cancerous). 

This threshold can be adjusted based on the 

desired sensitivity and specificity. 

• Class Label Mapping: The predicted class 

label is mapped to a human-readable format 

(e.g., "Normal," "Benign," "Malignant") 

using a predefined label mapping. This makes 

the results easier to interpret for end-users. 

• Visualization: The pipeline can optionally 

include visualization tools to highlight 

regions of interest in the input image. For 

example, heatmaps or saliency maps can be 

generated to show which parts of the image 

contributed most to the prediction. 

5.  MODEL EVALUATION 

Evaluating the performance of machine learning 

models is crucial to ensuring their reliability and 

effectiveness in cancer classification. In this study, we 

assess the performance of Convolutional Neural 

Networks (CNNs) and classical machine learning 

models such as Support Vector Machines (SVM) and 

Random Forest (RF) using standard evaluation 

metrics, including accuracy, precision, recall, and F1-

score. These metrics provide insights into the strengths 

and limitations of each model, guiding their practical 

applicability in clinical settings. 

 

5.1. Evaluation Metrics 

To comprehensively assess model performance, we 

use the following metrics: 

• Accuracy: Measures the proportion of 

correctly classified cancerous and non-

cancerous cases across the dataset. 

• Precision: Indicates how many of the 

predicted positive cases are actually positive, 

crucial for minimizing false positives in 

medical diagnosis. 

• Recall (Sensitivity): Reflects the model's 

ability to identify actual positive cases, 

reducing the risk of missing cancerous 

instances. 

Each model is validated using a separate test set to 

ensure that its performance generalizes well beyond 

the training data. The dataset is split into 70% for 

training, 15% for validation, and 15% for testing, 

ensuring robust model evaluation. 

5.2. Performance of CNN and Classical Models 

We evaluate CNNs and classical models across three 

cancer types—breast, lung, and oral cancer—to 

determine their classification effectiveness. 

Breast Cancer Detection 

• CNN Performance: The CNN model achieves 

a 92% accuracy, demonstrating its 

effectiveness in learning complex patterns 

from histopathological images. Precision and 

recall values are 91% and 93%, respectively, 

leading to an F1-score of 92%. 

• SVM Performance: The SVM classifier 

achieves an 89% accuracy, with a precision of 

88% and recall of 90%, yielding an F1-score 

of 89%. While slightly less accurate than 

CNN, SVM remains a competitive alternative 

with lower computational cost. 

Lung Cancer Detection 

• CNN Performance: The CNN model achieves 

an 88% accuracy, with precision and recall 

values of 87% and 89%, respectively. The 

model is particularly effective in 

distinguishing between malignant and benign 

lung cancer cases. 

• Random Forest Performance: The RF 

classifier achieves an 85% accuracy, with 

precision and recall of 84% and 86%, 

respectively. The ensemble nature of RF 

contributes to its strong performance but still 

falls behind CNNs in feature learning. 

Oral Cancer Detection 

• CNN Performance: The CNN model achieves 

an accuracy of 90%, with precision and recall 

values of 89% and 91%, leading to an F1-

score of 90%. The model effectively 

identifies oral cancer lesions with high 

sensitivity. 

• SVM Performance: The SVM classifier 

achieves an 87% accuracy, with precision and 

recall of 86% and 88%, respectively. While 

slightly less effective than CNN, it remains a 

reliable alternative in resource-constrained 

environments. 
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5.3. Comparative Analysis of Model Performance 

The results indicate that CNNs consistently 

outperform classical machine learning models across 

all cancer types. However, classical models like SVM 

and Random Forest remain viable alternatives, 

particularly in environments with limited 

computational resources. The performance gap 

between CNN and SVM is relatively small, suggesting 

that SVM, when paired with deep feature extraction, 

can achieve competitive results. 

Table 1: Overall Analysis of Models 

Model 
Cancer 

Type 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

CNN Breast 92 91 93 

SVM Breast 89 88 90 

CNN Lung 88 87 89 

Random 

Forest 
Lung 85 84 86 

CNN Oral 90 89 91 

SVM Oral 87 86 88 

     

Table 2: Summary of Model Performance by Cancer 

Type 

Model 

Breast 

Cancer 

Accuracy 

Lung 

Cancer 

Accuracy 

Oral 

Cancer 

Accuracy 

CNN 92% 88% 90% 

SVM 89% 86% 87% 

Random 

Forest 
87 85% 90 

Future work will focus on improving model 

generalizability using larger datasets, incorporating 

transfer learning, and exploring explainable AI 

techniques to enhance the interpretability of CNN 

decisions. 

6.  PREDICTION PIPELINE 

The prediction pipeline is a critical component of the 

multi-cancer detection system, enabling the 

classification of new, unseen medical images. This 

pipeline integrates the trained Convolutional Neural 

Network (CNN) for feature extraction and classical 

machine learning models for classification, providing 

a seamless and efficient workflow for cancer 

diagnosis. 

6.1 Integration into Clinical Workflows 

The prediction pipeline is designed to be integrated 

into clinical workflows, enabling healthcare 

professionals to use the system for real-time cancer 

diagnosis. Key considerations for integration include: 

• User Interface: A user-friendly interface (e.g., 

a web application or desktop application) can 

be developed to allow healthcare 

professionals to upload images, view 

predictions, and interpret results. 

• Scalability: The pipeline is designed to 

handle large volumes of images efficiently, 

making it suitable for use in hospitals and 

diagnostic centers. 

• Interoperability: The system can be integrated 

with existing medical imaging systems and 

electronic health records (EHRs), ensuring 

seamless data exchange and workflow 

integration. 

6.2 Result Example 

To illustrate the functionality of the prediction 

pipeline, consider the following example: 

1. A healthcare professional uploads an 

ultrasound image of a breast lesion into the 

system. 

2. The image is pre-processed (resized, 

normalized, and expanded into a batch). 

3. The CNN extracts a feature vector from the 

image. 

4. The feature vector is passed to an SVM 

classifier, which predicts the class label as 

"Malignant" with a probability score of 0.92. 

5. The system displays the prediction along with 

a heatmap highlighting the suspicious region 

in the image. 

6. The healthcare professional uses this 

information to make an informed decision 

about further diagnostic tests or treatment 

options. 

7.  CONCLUSION AND FUTURE WORK 

This research presents a comprehensive approach to 

multi-cancer detection using a combination of deep 

learning and classical machine learning techniques. 
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The proposed system demonstrates high accuracy in 

detecting breast, lung, and oral cancer from medical 

images, making it a promising tool for clinical 

applications. 

7.1 Key Findings 

• The CNN-based approach consistently 

outperforms classical machine learning 

models across all cancer types, achieving 

accuracy rates of 92%, 88%, and 90% for 

breast, lung, and oral cancer, respectively. 

• Classical machine learning models, 

particularly SVM, remain competitive 

alternatives with only marginally lower 

accuracy rates, offering computational 

efficiency and interpretability advantages. 

• The combination of CNN for feature 

extraction and classical models for 

classification provides a balanced 

approach that leverages the strengths of 

both paradigms. 

7.2 Future Work 

Future research directions include: 

• Expanded Datasets: Incorporating larger and 

more diverse datasets to improve model 

generalizability and robustness. 

• Transfer Learning: Exploring pre-trained 

models such as ResNet, VGG, or Efficient 

Net to enhance feature extraction capabilities. 

• Explainable AI: Developing techniques to 

improve the interpretability of CNN 

decisions, such as gradient-weighted class 

activation mapping (Grad-CAM) or layer-

wise relevance propagation (LRP). 

• Multi-modal Integration: Combining image 

data with other modalities, such as patient 

demographics, clinical history, and genomic 

data, to create more comprehensive 

diagnostic models. 

• Prospective Clinical Validation: Conducting 

prospective studies to validate the system's 

performance in real-world clinical settings. 
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